Lovacz Local Lemma
Let \(A_1, ... A_m\) be bad events such that \(\forall i\)
-
\[\mathbb{P}[A_i] \leq p\]
- \(A_i\) is mutually independent of all but \(d\) other events
Then:
- If \(p d \leq 1/4\), then \(\mathbb{P}[\cap_i \overline{A_i}] \geq (1 - 2 p)^m > 0\)
- If \(p d \leq 1/e\), then \(\mathbb{P}[\cap_i \overline{A_i}] \geq (1 - \frac{1}{d+1})^m > 0\)