A sequence of random variables \((X_n)_{n \in \mathbb{N}}\) converges in probability if \(\forall \epsilon > 0\)
\[\lim_{n \rightarrow \infty} P(\lvert X_n - X\lvert < \epsilon) = 1\]The Weak Law of Large Numbers states that if the set of random variables \(\{X_i\}_{i=1}^N\) are i.i.d. with \(\mathbb{E}_X[X_i] = \mu < \infty\) and \(\mathbb{V}_X[X_i] = \sigma^2 < \infty\), then the sample mean \(\frac{1}{N} \sum_{i=1}^N X_i\) converges in probability to the expected value.
A sequence of random variables $(X_n)_{n \in \mathbb{N}}\(__converges almost surely__ if\)\forall \epsilon > 0$$
\[P(\lim_{n \rightarrow \infty} \lvert X_n - X\lvert < \epsilon) = 1\]Convergence almost surely implies convergence in probability.