Classic Form: \(p(x\lvert \mu, \Sigma) = \frac{1}{\sqrt{2 \pi \det{\Sigma}}} \exp \Big( -\frac{1}{2}(x- \mu)^T \Sigma^{-1} (x - \mu) \Big)\)
Information Form: Define \(J = \Sigma^{-1}\) and \(h = J \mu\). Then
\[p(x\lvert \mu, \Sigma) \propto \exp \Big(-\frac{1}{2} x^T J x + x^T h \Big)\]Linear Form: \(x \sim \mathcal{N}(\mu, Sigma)\) if \(\exists A \in \mathbb{R}^{N \times N}\) and \(b \in \mathbb{R}^N\) such that \(x = Au + b\) where \(u \sim \mathcal{N}(0, I)\). Specifically, \(\mu = b\) and \(\Sigma = A A^T\).
Let \((X, Y) \sim \mathcal{N}(\begin{bmatrix} \mu_x \\ \mu_y \end{bmatrix}, \begin{bmatrix} \Sigma_{xx} & \Sigma_{xy} \\ \Sigma_{xy} & \Sigma_{yy}\end{bmatrix})\), or equivalently, \((X, Y) \sim \mathcal{N}^{-1}(\begin{bmatrix} h_x \\ h_y \end{bmatrix}, \begin{bmatrix} J_{xx} & J_{xy} \\ J_{xy} & J_{yy}\end{bmatrix})\). Then
Proof:
\[\begin{align*} p(y\lvert x) &\propto \exp \Big(-\frac{1}{2} \begin{bmatrix} x \\ y \end{bmatrix}^T J \begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} x \\ y \end{bmatrix}^T \begin{bmatrix} h_x \\ h_y \end{bmatrix} \Big)\\ &\propto \exp \Big(-\frac{1}{2} y^T J_{yy} y + (h_y - J_{yx} x)^T y \Big) \end{align*}\]Note that covariance/precision doesn’t depend on the conditioned variable. Also the mean is determined by an affine transformation of conditioned variance.
Suppose \(x_i, x_j\) are jointly Gaussian. \(x_i \perp x_j \Leftrightarrow \Sigma_{i,j}\).
Suppose \(x_i, x_j, x_k\) are jointly Gaussian. In general, \(x_i \perp x_j, x_j \perp x_k\) does not imply \(x_i \perp x_k\), but this does hold for Gaussians.