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Abstract

Representing and reasoning about physical space is fundamental to animal survival,
and the mammalian lineage expresses a wealth of specialized neural representa-
tions that encode space. Grid cells, whose discovery earned a Nobel prize, are
a striking example: a grid cell is a neuron that fires if and only if the animal is
spatially located at the vertices of a regular triangular lattice that tiles all explored
two-dimensional environments. Significant theoretical work has gone into under-
standing why mammals have learned these particular representations, and recent
work has proposed a “unified theory for the computational and mechanistic origin
of grid cells," claiming to answer why the mammalian lineage has learned grid
cells. However, the Unified Theory makes a series of highly specific assumptions
about the target readouts of grid cells - putatively place cells. In this work, we
explicitly identify what these mathematical assumptions are, then test two of the
critical assumptions using biological place cell data. At both the population and
single-cell levels, we find evidence suggesting that neither of the assumptions
are likely true in biological neural representations. These results call the Unified
Theory into question, suggesting that biological grid cells likely have a different
origin than those obtained in trained artificial neural networks.

1 Introduction

In the intricate realm of neural circuits that underpin navigation and spatial cognition, grid cells have
emerged as an especially intriguing pattern of neuronal activity. Located in the mammalian medial
entorhinal cortex, grid cells fire in a striking regular hexagonal grid pattern as an animal navigates
through space [13]. Their unique firing properties, believed to represent a metric for spatial navigation,
have drawn extensive attention. Recent work proposed a new “unified theory" for the origin of grid
cells2 [28, 30, 31, 29] to answer why the mammalian lineage has learned grid cells. However, the
Unified Theory relies on a sequence of assumptions about grid cells performing supervised learning
to predict specific targets, believed to be place cells (a type of neuron involved in spatial processing
[24, 22, 23]). To our knowledge, these assumptions have not been tested in biological place cells.
In this work, we seek to rectify this. We extract the assumptions made by the Unified Theory by

∗Denotes equal contribution and co-first authorship.
2In this context, “theory" is intended in the sense of an accurate and predictive mathematical description of

naturally occurring phenomena, akin to the theory of general relativity or quantum field theory.

NeurIPS 2023 Workshop Unifying Representations in Neural Models.



X (meters) Y (
mete

rs)

Place Cell Centers

X (meters) Y (
mete

rs)
Pl

ac
e 

Ce
ll 

Ac
tiv

ity

Place Cell 2

X (meters)

Pl
ac

e 
Ce

ll 
Ac

tiv
ity

Place Cell 2

Figure 1: Two key assumptions of the Unified Theory. Left: Readouts, as a population, must be
translationally invariant. Center and Right: Readouts, individually, must have center-surround tuning
curves.

revisiting its derivation in detail (App. B) then hone in on two pivotal suppositions specifically related
to the readouts i.e. supervised targets of biological grid cells. We evaluate these assumptions against
data from biological place cells and find that both assumptions are likely false. Such conclusions
challenge the Unified Theory’s explanation for the origin of grid cells in mammals.

2 Results

Identifying assumptions of the Unified Theory The Unified Theory seeks to answer why the
mammalian lineage has learnt grid cells. Its answer is that grid cells are the optimal solution to
predicting supervised targets that we generically call “readouts". Earlier papers claimed that these
readouts biologically correspond to place cells [28, 30], although later papers [31, 29] suggested that
these readouts might correspond to other biological quantities (more later). We reproduce the Unified
Theory in detail (App. B) to highlight its assumptions. In this work, we focus on two:

1. The readouts, as a population, must be translationally invariant (Fig. 1, Left).
2. The readouts, individually, must have carefully tuned center-surround tuning curves: either

Difference-of-Softmaxes (DoS) or a particular Difference-of-Gaussians (DoG) tuning curve
shape (Fig. 1, Right); these functions are defined in App. A.

We focus on these two assumptions because they are mathematically critical for the Unified Theory’s
applicability to biological grid cells and numerically critical for deep recurrent neural networks to
learn grid-like tuning [1, 28, 30, 21, 31], i.e., subsequent large-scale hyperparameter sweeps showed
relaxing these assumptions causes disappearance of grid-like representations [26]. To the best of our
knowledge, these assumptions have not been quantitatively tested in biological data; we do so here.

Are place cells translationally invariant as a population? In order to explain the origin of grid
cells, the Unified Theory requires that the readouts possess a translation-invariant spatial autocorre-
lation structure (App. B): only if the readouts’ spatial autocorrelation is (approximately) Toeplitz
will its eigenvectors be (approximately) Fourier modes and thus induce periodic eigenvectors for
emergence of grid-like tuning. One reason to question this assumption is significant previous litera-
ture suggesting that place cells over-represent certain locations e.g., borders, landmarks, rewarded
locations [25, 23, 33, 15, 16, 8, 6, 35, 12, 3]. Another reason is that place cells have a diversity
of tuning curve widths, even at a single dorsoventral location, and even within individual cells as
observed in recent experiments, e.g., [10]; this work also theoretically and computationally shows
that this dual heterogenous coding scheme is more optimal in terms of encoding position than a
homogenous scheme, which underlies the assumptions of the Unified Theory and makes it unlikely
to hold in biology.

We push the field forward by quantitatively measuring whether place cells are translationally invariant.
We use calcium imaging of place cell populations from 320 recording sessions across animals
from [18] and construct spatial autocorrelation matrices Σi

def
= PiP

T
i /n

(i)
p , where Pi ∈ Rn(i)

x ×n(i)
p is
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Figure 2: Biological place cells populations are likely not translation invariant, as required
mathematically by the Unified Theory. Biological place cell populations from 320 recorded
sessions [18] deviate significantly from a null distribution of translation-invariant artificial place cell
population used to train deep networks, as measured by (A) the matrix distance (Kolmogorov-Smirnov
2-sample: p = 4.72e−5) and the (B) matrix absolute percent error (Kolmogorov-Smirnov 2-sample:
p = 1.44e− 87). (C) Place cell spatial autocorrelation matrices Σi do not visually display constant
diagonals of Toeplitz matrices, as shown in 4 randomly chosen sessions. (D) Corresponding sessions’
spatial autocorrelation matrices have non-periodic leading eigenvectors.

the ith session’s n(i)
p place cells’ signals at n(i)

x spatial positions. To quantify how close a spatial
autocorrelation matrix is to being Toeplitz, we define a matrix’s projection onto the set of Toeplitz
matrices T :

ΠT (Σi)
def
= arg min

T∈T

∣∣∣∣T − Σi

∣∣∣∣2
F
. (1)

For details, see App. C. In each of the 320 sessions, we subsample the largest continuous spatial
region over which the population’s summed activity is above some threshold > 0, construct Σi, then
measure two different quantities to capture the extent to which the autocorrelation matrices deviates
from being Toeplitz: (i) the matrix distance

∣∣∣∣ΠT (Σi)− Σi

∣∣∣∣
F

and (ii) the matrix absolute percent
error

∣∣∣∣ΠT (Σi)− Σi

∣∣∣∣
F
/
∣∣∣∣Σi

∣∣∣∣
F

. Because our goal is to test whether biological place cells match
the artificial “place cells" used to the train the networks, we constructed a null distribution based
on the artificial “place cells" used to in previous papers [28, 30, 21, 31]. Specifically, we created
a translation-invariant artificial place cell population comprised of 15000 single-field, single-scale,
ideal-width DoG readouts, then, for each session, we randomly subsampled artificial place cells’
activity P̂i matching the dimensions (i.e. number of spatial bins, number of neurons) of the biological
place cell activity Pi, computed the artificial spatial autocorrelation Σ̂i

def
= P̂iP̂

T
i /n

(i)
p , and measured

the same two error metrics for Σ̂i. After this has been done for all 320 sessions, we apply a 2-sample
Kolmogorov-Smirnov test [19] to both metrics under the null hypotheses that the biological and
artificial empirical distributions were drawn from the same distribution.

For both metrics, and for all tested thresholds of spatial region coverage, biological responses have
correlation structures that deviate significantly from the requisite Toeplitz structure (Fig. 2AB).
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Figure 3: Subthreshold voltages of place cells do not display DoG/DoS tuning. (a-g) Measured
membrane voltage from a selection of place cells in various conditions. Panels a-d reproduced from
[14], e-f reproduced from [2] and g reproduced from [36] with permission.

Specifically, we find the probability that biological place cell spatial autocorrelation matrices comes
from the same distribution as the artificial translation-invariant autocorrelation matrices is, per the
matrix distance, 4.72e − 5 (Fig. 2A) and, per the matrix absolute percent error, 1.44e − 87 (Fig.
2B). As further confirmation, the spatial autocorrelation matrices do not visually display the constant
diagonals of Toeplitz matrices (Fig. 2C), and the leading eigenvectors of the biological spatial
autocorrelation matrices are not periodic (Fig. 2D). These results suggest that biological place cell
populations likely lack the translation invariance required by the Unified Theory.

Do place cells or their subthreshold responses have DoS or particular DoG shapes? In order to
explain the origin of grid cells, the Unified Theory requires that the readouts of the grid cells must
individually exhibit DoS or a particular DoG tuning curve shapes (App. B). However, when testing
this on biological data, there is some ambiguity: what are the readouts of biological grid cells? Earlier
papers [1, 28, 30, 21, 31] referred to the readouts as place cells, e.g., Section 2 of [28] and Figure 1
of [31]. However, biological place cells do not possess DoS/DoG-shaped tuning curves, as can been
seen from the wealth of extracellular place cell electrophysiology results [7, 24, 22, 34, 11, 9, 20].

A second possibility later suggested by the Unified Theory is that the readouts are subthreshold
inputs to place cells from grid cells [31, 29], though it is difficult to imagine why or how the target
for the entorhinal grid cells would be a particular shape of subthreshold activation function of
downstream neurons. To test this possibility, we hunted down and collated intracellular voltage
recordings of CA1 place cells [14, 2, 36] (Fig. 3). These recordings do not reveal DoS/DoG-shaped
subthreshold responses near their place fields. These results suggest that place cell inputs likely lack
the center-surround shape required by the Unified Theory and used numerically [28, 30, 21, 31]. A
third possibility suggested by the Unified Theory is that readouts are summed grid cell contribution
to inputs to place cells; we do not know of any dataset or experimental technique through which this
claim could be tested.

3 Discussion

In this work, we test two assumptions made by the Unified Theory for the origin of grid cells and
found both are likely not true at both the population and single cell levels. Our results call the Unified
Theory into question, suggesting that biological grid cells likely have a different origin than the
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grid-like representations found in trained artificial neural networks [1, 5, 28]. For a more promising
alternative, see [27].
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A Tuning Curves: Difference of Softmaxes and Difference of Gaussians

What is a Difference-of-Softmaxes (DoS) or Difference-of-Gaussians (DoG) tuning curve? Suppose
we sample a sequence of positions x0, ..., xT ∈ R2. We sample Np place cell centers {pi}

Np

i=1
uniformly at random within the (bounded) environment.

• Difference of Gaussians: A vector in RNp whose entries are given by:

αE exp
(
− 1

2σ2
E

||xt − pi||2
)
− αI exp

(
− 1

2σ2
I

||xt − pi||2
)

• Difference of Softmaxes: A vector in RNp whose entries are given by:

Softmax
(
− 1

2σ2
E

||xt − pi||2
)
− Softmax

(
− 1

2σ2
I

||xt − pi||2
)

In the Unified Theory, for DoG, only certain combinations of (αE , σE , αI , σI) should be theoretically
expected to produce grid-like tuning; most will not. See Fig. 4C in [26] for more details.

B Reproduction of & Commentary on the Unified Theory for the Origin of
Grid Cells

Here, we reproduce the Unified Theory of [28, 30, 31] to elucidate its assumptions, including the two
assumptions that we test in this work: (1) place cells as a population are translationally invariant, and
(2) place cells (or their subthreshold inputs) have difference-of-Gaussian or difference-of-Softmaxes
center-surround tuning curves. We note that the Unified Theory does not deal with dynamics of path
integration or learning dynamics of a deep recurrent network, but rather concerns the problem of
readout reconstruction/prediction. This leads us to the first assumption:

Assumption 1 (A1): The hypothetical network representations G ∈ Rnx×ng is some function of
space. Here nx is the number of spatial locations and ng is the number of hidden units. This is a
subtle but significant assumption because, for recurrent networks given velocity inputs, the networks’
representations are not a function of space, but rather develop into a function of space (i.e. builds a
continuous attractor) over the course of training. For a better understanding of why the assumption of
building a continuous manifold of fixed points is significant, see literature of the theory of continuous
attractors which is briefly reviewed in [17].

Under A1, consider a feedforward mapping P̂
def
=GW where W ∈ Rng×np . Here np is the number

of readout units. One can define the readout reconstruction error as the mean square loss between the
readout target P ∈ Rnx×np and prediction P̂

def
=GW :

E(G,W )
def
= ||P − P̂ ||2F = ||P −GW ||2F (2)

Assumption 2 (A2): Linear readout W relaxes, reaching its optimum much faster than G changes,
so that we can replace W with its optimal ordinary least squares value for fixed G,P :

W ∗(G,P ) = (GTG)−1GTP (3)

Substituting W ∗(G,P ) into the loss for W yields the error as a function of P and G:

E(G,P ) = ||P −G(GTG)−1GTP ||2F (4)

Assumption 3 (A3): G’s columns can be made orthonormal i.e. GTG = Ing
.This means that each

grid unit has the same average firing rate over all space, and that any 2 grid cells do not overlap.

Then, we can write down a Lagrangian for this optimization problem with Lagrange multiplier λ for
this constraint:

L = −E(G,P )− λ(GTG− Ing
) (5)
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We can then set GTG to I in the error term and the Lagrangian is now written as:

L = −||P −GGTP ||2F − λ(GTG− Ing
) (6)

L = −Tr[(P −GGTP )T (P −GGTP )]− λ(GTG− Ing ) (7)

Here, the identity ||M ||2F = Tr(MTM) has been employed. The trace term can be simplified further
using the cyclic permutation property of Trace: Tr(ABC) = Tr(CAB),

Tr[(P −GGTP )T (P −GGTP )] = Tr(PTP ) + Tr[GT (PPT )G(GTG)]− 2Tr(GTPPTG)

Here Σ
def
= 1

np
PPT ∈ Rnx×nx is the readout spatial correlation matrix. We can also drop the G

independent term above. Using the trace identity again, this term simplifies to Tr(GTPPTG). Hence
the total simplified Lagrangian is then:

L = Tr
[
GTΣG− λ(GTG− Ing )

]
(8)

Considering gradient learning dynamics, one gets the following evolution equation for G:

d

dt
G = ∇GL ⇒ d

dt
G = ΣG− λG (9)

[28, 30] then simplify further analysis by considering a single grid unit. This corresponds to replacing
the nx × ng matrix G by the nx × 1 column vector g:

d

dt
g = Σg − λg (10)

This linear dynamical system captures how the pattern g of a unit evolves with gradient learning. The
Unified Theory concludes that the eigenvectors corresponding to the subspace of the top eigenvalue
form the optimal pattern, since these eigenvectors will grow exponentially with the fastest rate.

Assumption 4 (A4): The readout spatial correlation Σ is translation-invariant over space i.e. Σx,x′ =
1
np

∑np

i=1 pi(x)pi(x
′) = 1

np

∑np

i=1 pi(x+∆)pi(x
′ +∆) = Σx+∆,x′+∆∀∆.

Assumption 5 (A5): The environment has periodic boundaries (or no boundaries, which corresponds
to a continuum limit). [An alternative assumption in other parts of the derivations and numerics is
(A5’): the assumption involves periodic boundary conditions with a small box size L).]

Under A4 and A5, the eigenmodes of Σ are exactly Fourier modes across space and form a periodic
basis. The normalized eigenvectors are indexed by their wavelength, k, and are denoted fk with
corresponding eigenvalue λk. To calculate this eigenvalue, the Unified Theory uses Fourier analysis:

Σfk = λkfk

=⇒ λk = f†
kΣfk

Here f†
k denotes the conjugate of the eigenvector fk.

Next, they rewrite in component form: Σx,x′ = 1/np(PPT )x,x′ = 1/np

∑np

i=1 pi(x)pi(x
′)

λk = f†
kΣfk =

np∑
i=1

∑
x,x′

1

np
f∗
k(x

′)pi(x)pi(x
′)fk(x)

=
1

np

np∑
i=1

(∑
x

pi(x)f
∗
k(x)

)(∑
x′

pi(x
′)fk(x

′)

)

=
1

np

np∑
i=1

p̃∗(k)p̃(k) = |p̃(k)|2

=⇒ λk = |p̃(k)|2

The Unified Theory concludes that the eigenvalue corresponding to eigenvectors with wavelength k
is given by the corresponding power of the Fourier spectrum of the readout correlation matrix Σ. The
optimal pattern is thus the one which has the highest Fourier power in Σ.
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Further, [28, 30] consider the effect of non-negativity perturbatively in the readout regression frame-
work by phenomenologically adding a term to the Lagrangian, =

∫
x
σ(g)dx.

L = Tr
[
GTΣG− λ(GTG− Ing

)
]
+

∫
x

σ(g)dx (11)

In Fourier space, [28, 30] show perturbatively that this amounts to a cubic interaction term, which
is the leading order term that non-trivially distinguishes between nonlinearities such as ReLU and
Sigmoid which break the g 7→ −g symmmetry and nonlinearities such as Tanh which do not. Again,
specializing to the single neuron Lagrangian,

Lint =

∫
k,k′,k′′

g(k)g(k′)g(k′′)δ(k + k′ + k′′)dkdk′dk′′

This term effectively acts as a penalty for non-negativity. Here, it is important to point out that this
cubic term appears not only for non-negativity, but rather any function that is not anti-symmetric.
Negative activation functions such as slightly shifted Tanh can also have a cubic term. Thus, non-
negativity is a special case, as has been noted in [28] Appendix B. We refer to this as Assumption 6
(A6).
Under this assumption, [28, 30] conclude that the optimal pattern consists of a triplet of Fourier
waves with equal amplitude and k−vectors that lie on an equilateral triangle, at 60o to each other.

Next, we examine the Fourier spectrum of a translationally invariant Gaussian readout f(∆x) =
1√
2πσ2

exp(−(∆x2)/2σ2) under the assumptions of this theory. For simplicity and to provide

intuition we write its Fourier transform in 1d, which is given by another Gaussian. The peak of the
Fourier spectrum is at k = 0, or the DC, non-periodic mode:

f̃(k) =

∫
R

1√
2πσ2

exp(−(∆x2)/2σ2)eik∆xd∆x

= exp(−k2σ2/2)

In simulations in a finite environment of length L, the allowed frequency modes are discretized with
bin-size 2π/L ((A5’). This is shown in Fig.4 as lattice points with the Fourier spectrum overlayed
as in [28, 30]. Gaussian readouts produce a Fourier spectrum peaked at the central DC mode. This
mode has no periodicity and thus the theory for a single hidden unit predicts no lattices in this hidden
unit, in the continuum or small-box discrete limit.

Until now, all analysis was performed for a single grid unit. What happens in full multi-cell setting?
For this case, [28] shows that the global optimum to the constrained optimization problem:

max
G

Tr(GTΣG) such that GTG = Ing ,

i.e. under (A3) involves the columns of G spanning the top ng eigenmodes of Σ (Theorem B.2,
Appendix B of [28]). Under (A6), [28] also shows that with a Fourier spectrum consisting of a wide
annulus (in the discrete setting this corresponds to a Fourier spectrum of rings of different radii),
the optimum consists of a hierarchy of hexagonal maps, but only if the Fourier powers of these
rings are exactly equal (Lemma B.3, Appendix B). For purely Gaussian spectra (corresponding to
Gaussian readouts), the full theoretical solution of this problem depends on specific details of the
power spectrum curve (i.e. the width of the Gaussian) since each discrete eigenmode has a different
Fourier power which must be taken into account while constructing linear combinations of modes,
and thus is not solvable analytically. Instead, [28] numerically simulates the Lagrangian dynamics
with assumption (A3) to find a hierarchy of lattices. However, the number of different period lattices
that result is related directly to and nearly as numerous as the number of cells. For a large number of
neurons, such as the 4096 hidden units used in simulations [31, 29], and sufficient wide power spectra,
this would mean the optimum solutions would consist of likely hundreds of discrete frequencies
(each corresponding to a grid module). This is to be contrasted with the 4-8 modules estimated to
exist in rodents [32].

We next consider a translationally invariant Difference-of-Gaussians readout. We refer to this as
Assumption 7 (A7).
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Figure 4: Fourier structure of Gaussian readouts.

f(∆x) =
αE√
2πσ2

E

exp(−(∆x)2/2σ2
E)−

αI√
2πσ2

I

exp(−(∆x)2/2σ2
I )

Under A7, the readout Fourier spectrum is given by:

f̃(k) =

∫
R
d(∆x)f(∆x)eik∆x

= αEσE exp(−σ2
Ek

2/2)− αIσI exp(−σ2
Ik

2/2)

The solution will be periodic if the maximum, given by [k∗]2 = 2
σ2
E−σ2

I
log(αEσ

3
E/αIσ

3
I ), contains

sufficient power and if k∗ ̸= 0; specifically, the condition for pattern formation is f̃(k) > 1; see
[4, 17, 26] for more details. This reveals the second assumption that we focus on in this work: the
Unified Theory requires that readout tuning curves have a center-surround functional form with
hyperparameters αE , αI , σE , σI lying in a narrow range.

C Projecting a Matrix onto Set of Toeplitz Matrices

In the main text, we needed to quantify how close a spatial autocorrelation matrix is to being Toeplitz.
We thus define a matrix’s projection onto the set of Toeplitz matrices T in Eqn. 1, repeated here for
convenience:

ΠT (Σi)
def
= arg min

T∈T

∣∣∣∣T − Σi

∣∣∣∣2
F
. (12)

How is this projection performed? Recall that a Toeplitz matrix is defined as a diagonal-constant
matrix, i.e., each diagonal has a constant value. Consequently, to project Σi onto the set of Topelitz
matrices, for each diagonal, we compute Σi’s average value and take that average value to be the

12



Toeplitz matrix’s constant value. For a small example:

ΠT

([
1 4 7
2 5 8
3 6 9

])
=

[
(1 + 5 + 9)/3 (4 + 8)/2 (7)/1
(2 + 6)/2 (1 + 5 + 9)/3 (4 + 8)/2
(3)/1 (2 + 6)/2 (1 + 5 + 9)/3

]
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