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Abstract

Clustering is a fundamental unsupervised learning problem, and recent work
showed modern continuous associative memory (AM) networks can learn to cluster
data via a novel unconstrained continuous relaxation of the discrete clustering
optimization problem. In this work, we demonstrate that the energy function of
that AM network can be viewed as the scaled negative log likelihood of a Gaussian
mixture model, and that the dynamics of the AM network can be viewed as per-
forming expectation maximization via gradient ascent rather than via closed-form
coordinate ascent. Based on this insight, we show that a widespread practical
implementation choice - self-attention with pre-layer normalization - approximates
clustering on the hypersphere with inhomogeneous von Mises-Fisher likelihoods,
suggesting a future experiment to improve transformers. We additionally leverage
this connection to propose a novel AM network with the ability to create new
memories during learning, as necessitated by the data, by drawing on tools from
combinatorial stochastic processes and Bayesian nonparametrics.

1 Introduction

Clustering is a ubiquitous unsupervised learning problem in which data are to be partitioned based on
some notion of similarity. Recent work has shown the potential of modern continuous associative
memory (AM) networks to adeptly cluster data [18], based on a continuous relaxation approach of
the typically discrete clustering optimization problem. We show here that the energy function of the
proposed AM network corresponds to the negative log likelihood of the data, and that the dynamics
of the AM network’s state and memories correspond one-to-one with the two steps of expectation
maximization. By establishing this connection, we further discover that a defacto implementation
choice in large-scale transformers - namely, self-attention with pre-layer normalization - approximates
clustering on the hypersphere with inhomogeneous von Mises-Fisher likelihoods and non-uniform
mixing proportions. Capitalizing on these insights, we additionally introduce a novel AM network
imbued with the capability to form new memories during learning as necessitated by the data using
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ideas from bayesian nonparametrics. We are working to test our ideas numerically, but ran out of
time & space for this workshop submission.

2 Background

Clustering with K-Means. One common algorithm for data in Euclidean space x1, ...,xN ∈ RD

is the K-Means algorithm [14], which learns K centroids µ1, ...,µK ∈ RD by minimizing the
following objective function:

min
µ1,...,µK

∑
x

||x− µx||2 , µx
def
= argmin

1,...,K
||x− µk||2

Clustering with Associative Memory (CLAM) Networks. Saha et al. 2023 recently proposed
a clustering algorithm using an associative memory (AM) network, termed CLAM [18]. The AM
network’s fixed points are collectively determined by the memories (in AM terminology) or centroids
(in clustering terminology). Specifically, let µ1, ...,µK ∈ RD be K (fixed) memories. The energy
function [13] for any state v is:

E(v)
def
= − 1

β
log

(∑
k

exp
(
− β||µk − v||2

))
. (1)

To determine the cluster assignment for datum x ∈ RD, we initialize the AM network’s state at time
t = 0 to v(t = 0) = x, and run the network dynamics to minimize the energy function:

τ
dv(t)

dt

def
= −1

2
∇vE(v) =

∑
k

(µk − v)σ
(
− β||µk − v||2

)
, (2)

where σ(·) denotes the softmax function. The energy is non-increasing since d
dtE(v) = ∇vE(v) ·

dv
dt = −(1/2)∇vE(v)·∇vE(v) = −(1/2)||∇vE(v)||2 ≤ 0; consequently, the energy is guaranteed
to converge to a local minima. Once the energy converges, we assign the datum to the nearest memory.
To learn the memories, we perform gradient descent on the reconstruction error:

n∑
n=1

∣∣∣∣∣∣xn − vT,{µk}
n

∣∣∣∣∣∣2, (3)

where v
T,{µk}
n is the state of the AM network with memories {µk}Kk=1 having been initialized at

v(t = 0) = xn and then following the CLAM dynamics (Eqn. 2) for T time.

Finite Mixture Models. The probabilistic approach to clustering is known as mixture modeling
[6]. In a finite Gaussian mixture model, let z ∈ [K] denote the latent variable cluster assignment and
let θ denote the model parameters: {πk}Kk=1 are the mixing coefficients, and {µk,Σk}Kk=1 are the
means and covariances of the clusters. The data density is:

p(x; θ)
def
=

K∑
k=1

p(x|z = k; θ) p(z = k; θ)
def
=

K∑
k=1

N (µk,Σk)πk. (4)

One can establish an equivalence between the energy function of the associative memory network and
the negative log likelihood of the Gaussian mixture model by assuming uniform mixing coefficients
πk = 1/K and shared isotropic covariance Σk = 2β−1ID [6]:

− log p(x; θ) ∝ − 1

β
log

(∑
k

exp(−β||µk − x||2)

)
+ C, (5)

for irrelevant constants C, and therefore:

−∇x log p(x; θ) =
∑
k

(µk − x)σ
(
− β||µk − x||2

)
. (6)
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We see from these two equations that CLAM’s energy function is equal to the (inverse temperature-
scaled) negative log likelihood, and the dynamics of minimizing the energy function via gradient
descent are exactly equivalent to the dynamics of minimizing the negative log likelihood via gradient
descent. Choosing non-uniform mixing proportions corresponds to Saha et al. 2023 [18]’s “weighted
clustering," and choosing a von Mises-Fisher likelihood corresponds to their “spherical clustering";
one can, of course, choose other likelihoods e.g. Laplace, uniform, Lévy, etc.

3 Clustering with Associative Memory Networks is Expectation
Maximization in a Probabilistic Mixture Model

Expectation Maximization (EM) [10] is a widely known coordinate ascent algorithm for latent variable
models. When using EM to fit a Gaussian mixture model to data, EM alternates updates of two
quantities: (1) the cluster assignments p(z = k|x; θ), sometimes called posteriors or responsibilities,
and (2) the parameters i.e. mixing proportions {πk}k, centroids {µk}k and covariances {Σk}k.
Although closed-form expressions exist for both in the case of a Gaussian mixture model, one can
alternatively take gradient steps for both the E and M steps; this was called Generalized EM in the
original work [10] and further explored in later work, e.g., [26, 15, 19]. In a Gaussian mixture model,
holding the parameters θ fixed, the cluster assignment posterior is:

p(z = k|x; θ) = p(x|z = k; θ) p(z = k; θ)∑
k′ p(x|z = k′; θ) p(z = k′; θ)

=
N (x;µk,Σk)πk∑
k′ N (x;µk′ ,Σk′)πk′

. (7)

Assuming uniform mixing proportions πk = 1/K, and assuming identical isotropic cluster covari-
ances Σk = 2β−1I , the cluster assignment posterior simplifies to:

p(z = k|x; θ) =
exp

(
− β||µk − x||2

)∑
k′ exp

(
− β||µk′ − x||2

) = σ(−β||µk − x||2). (8)

The fixed points of the CLAM dynamics are given by a weighted combination of the centroids, where
the weights are given by the cluster assignment posteriors. Specifically, if we initialize v(0) = x,
then v∗ def

=
∑

k p(z = k|x; θ)µk is a fixed point:

dv∗

dt
=

1

τ

(∑
k

µkσ
(
− β||µk − v∗||2

)
︸ ︷︷ ︸

def
= v∗

−v∗
∑
k

σ
(
− β||µk − v∗||2

)
︸ ︷︷ ︸

=1

)
=

1

τ
(v∗ − v∗) = 0.

EM’s two alternating phases correspond to CLAM’s two alternating phases. EM’s expectation step
prescribes minimizing the negative log likelihood (Eqn. 5) with respect to the cluster assignment
posterior probabilities by performing gradient descent (Eqn. 6), which corresponds to CLAM
minimizing the energy function (Eqn. 1) with respect to the particle by rolling out the dynamics
(Eqn. 2). The fixed points of the dynamics implicitly contain the probabilistic cluster assignments.
Then, EM’s maximization step prescribes minimixing the negative log likelihood by taking a gradient
step with respect to the parameters θ, which corresponds to CLAM shaping the energy landscape by
taking a gradient step with respect to the parameters θ.

4 Self-Attention with Pre-Layer Normalization Approximates Clustering on
the Hypersphere

By making this connection between clustering with associative memory networks and probabilistic
inference in mixture models, we discover a way to understand the interaction between self-attention
and pre-layer normalization. The well-known equation for self-attention [23] is z = V σ(Kq).
Previous work [17] connected this to Hopfield networks. However, in practice, transformers are not
purely stacked self-attention layers; among many components, layer norm [4] plays a crucial role.
Layer norm transforms a vector x ∈ RD by computing its mean m = (

∑
d xd)/D and its variance

σ2 = (
∑

d(xd −m)2)/D, then shifting and scaling by learnable parameters γ ∈ R and δ ∈ RD:

LNγ,δ(x)
def
= γ

x−m√
σ2 + ϵ

+ δ.
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ϵ is a small constant for numerical stability. Practitioners have found that applying layer norm before
self-attention layers in transformers (called “pre-layer norm") yields significantly better performance
[5, 9, 24, 25]. What effect does composition of pre-layer norm and self-attention have? We show that
the two together approximate clustering on the hypersphere using a mixture of inhomogeneous von
Mises-Fisher (vMF) distributions. Recall that the vMF density function, with unit vector mi and
concentration κi ≥ 0 is:

p(x;mi, κi) ∝ exp(κi mi · x).

Define q̃ as the pre-shifted and scaled query i.e., q def
= γq̃+ δ, with ||q̃||2 ≈ 1. The ith element in the

numerator of the softmax is:

exp(kT
i q) = exp(kT

i (γq̃ + δ)) = exp

(
γ||ki||︸ ︷︷ ︸
=κi

ki

||ki||︸ ︷︷ ︸
=mi

· q̃

)
· exp(ki · δ)︸ ︷︷ ︸

=π̃i

. (9)

Pre-norm followed by self-attention is equivalent to clustering with inhomogeneous vMF likelihoods
and with unnormalized mixing proportions. A related commentary about pre-layer norm and self-
attention has been made before [8], albeit in a non-clustering context. This also suggests a limited
expressivity: the concentrations and the mixing proportions are inextricably tied via ki, whereas one
might want them to be independent; future work can easily test separating them.

5 Infinite Clustering with Associative Memory Networks

By establishing this connection between CLAM and probabilistic inference in a Gaussian mixture
model, one can draw upon the wealth of methods in probabilistic clustering to create new associative
memory networks with new capabilities. One capability is creating new memories (new clusters)
as necessitated by the data. This is interesting both biologically and computationally. Biologically,
animals create new memories throughout their lives, and the process by which these processes occur
are fundamental topics in experimental and computational neuroscience alike. Computationally, in
the context of clustering, choosing the right number of clusters is a perennial dilemma.

To equip an AM network with the ability to create new memories, we propose leveraging Bayesian
nonparametrics using combinatorial stochastic processes [16]. Specifically, we will use the Dirichlet
Process (DP), and its generalization the Pitman-Yor Process (PYP). These two processes both define
a probability distribution over partitions of set, that can then be used as an “infinite"-dimensional
prior over the number of partitions, i.e. clusters. For notational convenience, we will instead work
with the (1-parameter) Chinese Restaurant Process [1] (CRP) and its generalization, the 2-parameter
Chinese Restaurant Process, corresponding to the DP and PYP, respectively. The CRP allows one
to specify a prior over which cluster the nth data point will be assigned to, conditioned on where
the preceding n− 1 data were assigned and hyperparameter α > 0 specifying the (unnoramlized)
probability of creating a new cluster:

p(cn = c|c<n, α)
def
=

1

α+ n− 1


∑

n′<n I(cn′ = c) if 1 ≤ c ≤ Cn−1

α if c = Cn−1 + 1

0 otherwise
(10)

CRP (α) produces logarithmetically many clusters in n, which is non-ideal for data with power-law
tails. The 2-parameter CRP introduces a second hyperparameter d ∈ [0, 1) that accelerates how
quickly new clusters form and decelerates how quickly existing clusters accumulate mass.

p(cn = c|c<n, α, d)
def
=

1

n− 1 + α


−d+

∑
n′<n I(cn = c) if 1 ≤ c ≤ Cn−1

α+ Cn−1 · d if c = Cn−1 + 1

0 otherwise
(11)

We propose using these to define a novel AM network with the ability to create new clusters:

E(v)
def
= − 1

β
log

(
(α+dK) exp

(
−(β−1+ρ−1)−1||v||2

)
+

K∑
k=1

(πk−d) ·exp
(
−β||µk−v||2

))
(12)

For discussion, related work and future directions, see App. A.
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A Discussion

Biological agents learn from radically different data than most deep learning models. Deep neural
networks typically work best when trained on (self)supervised stationary data presented in an
offline/aggregate manner. In contrast, most biological agents learn from unsupervised nonstationary
data presented in an online/streaming manner. This observation has led many to design algorithms
for unsupervised learning on non-stationary streaming data, from both probabilistic [20, 21, 22] and
associative memory network approaches [7, 2]. Interestingly, the probabilistic algorithms share some
striking similarities with memory engrams [12], an exciting new area of experimental neuroscience.
Others have explored the connection between modern continuous Hopfield networks and probabilistic
modeling [11] [3]. We are especially excited to combine insights from AM networks and probabilistic
modeling to create better algorithms and to model phenomona in cognitive science and neuroscience.
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