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Abstract

Machine learning models misbehave, often in unexpected ways. One prominent
misbehavior is when the test loss diverges at the interpolation threshold, perhaps
best known from its distinctive appearance in double descent. While considerable
theoretical effort has gone into understanding generalization of overparameterized
models, less effort has been made at understanding why the test loss misbehaves
at the interpolation threshold. Moreover, analytically solvable models in this area
employ a range of assumptions and use complex techniques from random matrix
theory, statistical mechanics, and kernel methods, making it difficult to assess when
and why test error might diverge. In this work, we analytically study the simplest
supervised model - ordinary linear regression - and show intuitively and rigorously
when and why a divergence occurs at the interpolation threshold using basic linear
algebra. We identify three interpretable factors that, when all present, cause the
divergence. We demonstrate on real data that linear models’ test losses diverge at
the interpolation threshold and that the divergence disappears when we ablate any
one of the three identified factors. We conclude with insights on recent discoveries
in nonlinear models regarding superposition and double descent.

1 Introduction

Machine learning models, while incredibly powerful, can sometimes act unpredictably. One intriguing
behavior is when the test loss suddenly diverges at the interpolation threshold: the point where the
model perfectly fits the training data, achieving zero training error. This phenomenon is distinctly
observed in the double descent curve [5]. Although much theoretical work has been done to
comprehend generalization of overparameterized models [27, 18, 8, 26, 5, 4, 6, 17, 21, 2, 15, 1, 24,
22, 23, 16, 11, 3], a comprehensive understanding of why test loss behaves erratically at this threshold
remains elusive. Many analytical models rely on a plethora of assumptions (e.g., i.i.d additive
Gaussian noise, sub-Gaussian covariates, (8 + m)-moments) and use advanced proof techniques
from random matrix theory, statistical mechanics, and kernel methods. This complexity muddies the
waters, making it challenging to pinpoint the precise conditions leading to test error divergence. For
instance, a recent study on toy nonlinear autoencoders by Anthropic unveiled a divergence even in
the absence of noise [12], an assumption that many theories relied upon [4, 15, 6, 11, 16, 3]. This
unexpected outcome prompts the question: with all this theory, should we have anticipated the result?
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Figure 1: Ordinary linear regression exhibits a divergence at the interpolation threshold on
synthetic and real data. Left to Right: Synthetic, California Housing [19], Diabetes [9], World
Health Organization Life Expectancy [10].

In this work, our goal is to explain intuitively and quantitatively why the test loss diverges at the
interpolation threshold, without assumptions and without resorting to intricate mathematical tools
(e.g., random matrix theory, replica calculations, reproducing kernel Hilbert spaces) but also without
sacrificing rigor. To accomplish this, we focus on the basics by examining the simplest supervised
model - ordinary linear regression - using the most basic linear algebra primitive: the singular value
decomposition1. We identify three interpretable factors which, when collectively present, trigger
the divergence. Through practical experiments on real data sets, we confirm that both model’s test
losses diverge at the interpolation threshold, and this divergence vanishes when even one of the three
factors is removed. We conclude by shedding light on recent results in nonlinear models concerning
superposition [12]. By grounding our understanding in this foundational study, we hope to offer
valuable insights into the perplexing behaviors observed in more complex nonlinear models.

2 Divergence in Ordinary Linear Regression

To offer an intuitive yet quantitative understanding of divergence at the interpolation threshold, we
turn to ordinary linear regression. Ordinary linear regression is useful for its simplicity, and because
closed-form solutions exist for both underparameterized and overparameterized regimes, meaning we
can avoid complexity introduced by the learning algorithm and its corresponding learning dynamics.

Notation and Terminology Consider a regression dataset of N training data with features x⃗n ∈
RD and targets yn ∈ R. We sometimes use matrix-vector notation to refer to the training data:

X ∈ RN×D and Y ∈ RN×1. In ordinary linear regression, we want to learn parameters ˆ⃗
β ∈ RD

such that x⃗n · ˆ⃗β ≈ yn. We will study three key parameters: number of model parameters P , number
of training data N , and dimensionality of the data D. We say that a model is overparameterized
(a.k.a. underconstrained) if N < P and underparameterized (a.k.a. overconstrained) if N > P . The
interpolation threshold refers to N = P , because when N ≤ P , the model can perfectly interpolate
the training points. Recall that in ordinary linear regression, the number of fit parameters P must
equal the dimension D of the covariates. Consequently, rather than thinking about changing the
number of parameters P , we’ll instead think about changing the number of data points N . Because
the divergence is fundamentally about the ratio of number of parameters P to number of data points
N , varying the number of data is equivalent to varying the number of parameters.

Empirical Evidence on Synthetic & Real Data Before studying ordinary linear regression mathe-
matically, does our claim that ordinary linear regression exhibits a divergence at the interpolation
threshold hold empirically? We show that it indeed does, using one synthetic dataset and three real
datasets (World Health Organization Life Expectancy [10], California Housing [19], Diabetes [9]);
these three real datasets were selected on the basis of being easily accessible, e.g., through sklearn
[20]. All display a sharp spike in test mean squared error at the interpolation threshold (Fig. 1).

Mathematical Analysis of Ordinary Linear Regression To understand under what conditions
and why the test loss diverges at the interpolation threshold in linear regression, we’ll study the two

1Note: See [25] for a more pedagogical version of this manuscript
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parameterization regimes. If the regression is underparameterized, we estimate the linear relationship
between covariates x⃗n and target yn by solving the least-squares minimization problem:

ˆ⃗
βunder

def
= argmin

β⃗

1

N

∑
n

||x⃗n · β⃗ − yn||22 = argmin
β⃗

||Xβ⃗ − Y ||22.

The solution is the ordinary least squares estimator based on the second moment matrix XTX:

ˆ⃗
βunder = (XTX)−1XTY.

If the model is overparameterized, the optimization problem is ill-posed since we have fewer con-
straints than parameters. Consequently, we choose a different (constrained) optimization problem:

ˆ⃗
βover

def
= argmin

β⃗
||β⃗||22 s.t. ∀n ∈ {1, ..., N} x⃗n · β⃗ = yn.

We choose this optimization problem because it is the one gradient descent implicitly minimizes
(App. A). The solution to this optimization problem uses the Gram matrix XXT ∈ RN×N :

ˆ⃗
βover = XT (XXT )−1Y.

One way to see why the Gram matrix appears is via constrained optimization: define the Lagrangian
L(β⃗, λ⃗) def

= ||β⃗||22+ λ⃗T (Y −Xβ⃗) with Lagrange multipliers λ⃗ ∈ RN , then differentiate with respect
to the parameters and Lagrange multipliers to obtain the overparameterized solution. After being fit,
for test point x⃗test, the model will make the following predictions:

ŷtest,under = x⃗test ·
ˆ⃗
βunder = x⃗test · (XTX)−1XTY

ŷtest,over = x⃗test ·
ˆ⃗
βover = x⃗test ·XT (XXT )−1Y.

Hidden in the above equations is an interaction between three quantities that can, when all grow
extreme, create a divergence in the test loss. To reveal the three quantities, we’ll rewrite the regression
targets by introducing a slightly more detailed notation. Unknown to us, there are some ideal linear
parameters β⃗∗ ∈ RP = RD that truly minimize the test mean squared error. We can write any
regression target as the inner product of the data x⃗n and the ideal parameters β∗, plus an additional
error term en that is an “uncapturable" residual from the “perspective" of the model class:

yn = x⃗n · β⃗∗ + en.

In matrix-vector form, we will equivalently write Y = Xβ⃗∗+E with E ∈ RN×1. To be clear, we are
not imposing assumptions on the model or data. Rather, we are introducing notation to express that
there are (unknown) ideal linear parameters, and (possibly) errors E that even the ideal model might
be unable to capture; these errors E could be random noise or could be fully deterministic patterns
that this particular model class cannot capture. Using this new notation, we rewrite the model’s
predictions to show how the test datum’s features x⃗test, training data’s features X and training data’s
regression targets Y interact. Let y∗test

def
= x⃗test · β∗. In the underparameterized regime:

ŷtest,under = ŷtest,under − y∗test = x⃗test · (XTX)−1XTE.

This equation is important, but opaque. To extract the intuition, replace X with its singular value
decomposition X = UΣV T to reveal how different quantities interact. Let R def

= rank(X) and let
σ1 > σ2 > ... > σR > 0 be X’s (non-zero) singular values. We can decompose the underparameter-
ized prediction error ŷtest,under − y∗test along the orthogonal singular modes:

ŷtest,under − y∗test = x⃗test · V Σ+UTE =

R∑
r=1

1

σr
(x⃗test · v⃗r)(u⃗r · E).
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Figure 2: Required Factor #1: How much the training features vary in each direction. More
formally, the test loss diverges at the interpolation threshold only if the training features X contain
small (non-zero) singular values. Ablation: By removing all singular values below a cutoff, the
divergence at the interpolation threshold is diminished or disappears entirely.

Figure 3: Required Factor #2: How much, and in which directions, the test features vary relative
to the training features. More formally, the test loss diverges only if the test features x⃗test have
a large projection onto the training features X’s right singular vectors V . Ablation: By projecting
the test features into the subspace defined by the leading singular modes, the divergence at the
interpolation threshold is diminished or disappears entirely.

In the overparameterized regime, our calculations change slightly:

ŷtest,over − y∗test = x⃗test · (XT (XXT )−1X − ID)β∗ + x⃗test · (XTX)−1XTE.

The overparameterized prediction error ŷtest,over − y∗test has an extra bias term: x⃗test ·
(XT (XXT )−1X − ID)β∗. The bias exists in the overparameterized regime because for N data
points in D = P dimensions, the model can “see" fluctuations in at most N dimensions, but has no
“visibility" into the remaining P −N dimensions. This causes information about the optimal linear
relationship β⃗∗ to be lost. The other term, the variance, causes the divergence:

R∑
r=1

1

σr
(x⃗test · v⃗r)(u⃗r · E). (1)

Eqn. 1 is critical. It reveals that our test prediction error (and thus, our test squared error!) will
depend on an interaction between 3 quantities:

1. How much the training features X vary in each direction; more formally, the inverse
(non-zero) singular values of the training features X: 1

σr
.

2. How much the test features x⃗test vary relative to the training features X (Fig. 2); more
formally: how x⃗test projects onto X’s right singular vectors V : x⃗test · v⃗r.

3. How well the best possible model in the model class can correlate the variance in the training
features X with the training regression targets Y ; more formally: how the residuals E of the
best possible model in the model class (i.e. insurmountable “errors" from the “perspective"
of the model class) project onto X’s left singular vectors U : u⃗r · E.

When (1) and (3) co-occur, the model’s parameters along this mode are likely incorrect. When (2) is
added to the mix by a test datum x⃗test with a large projection along this mode, the model is forced to
extrapolate significantly beyond what it saw in the training data, in a direction where the training data
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Figure 4: Required Factor #3: How well the best possible model in the model class can correlate
variance in training features with training targets. More formally, the test loss diverges only if the
residuals from the best possible model in the model class have a large projection onto the training
features X’s left singular vectors. Ablation: By ensuring the true relationship between features and
targets is within the function class i.e. linear, the divergence at the interpolation threshold disappears.

Figure 5: The training features are most likely to obtain their smallest non-zero singular value
when approaching the interpolation threshold. This means that the first required factor for a
divergence (small non-zero singular values; Fig. 2) is likely to occur near the interpolation threshold.

had an error-prone relationship between its training predictions and the training regression targets,
using parameters that are likely wrong. As a consequence, the test squared error explodes!

Divergence at the Interpolation Threshold Why does this divergence happen near the interpo-
lation threshold? The answer is that the first factor (small non-zero singular values in the training
features X) is likely to occur at the interpolation threshold (Fig. 5), but why? Suppose we’re given
a single training datum x⃗1. So long as this datum isn’t exactly zero, that datum varies in a single
direction, meaning we gain information about the variance in that direction, but the variance in all
orthogonal directions is exactly 0. With the second training datum x⃗2, so long as this datum isn’t
exactly zero, that datum varies, but now, some fraction of x⃗2 might have a positive projection along
x⃗1; if this happens (and it likely will, since the two vectors are unlikely to be exactly orthogonal),
the shared direction gives us more information about the variance in this shared direction, but less
information about the second orthogonal direction of variation. Ergo, the training data’s smallest
non-zero singular value after 2 samples is probabilistically smaller than after 1 sample. As we
approach the interpolation threshold, the probability that each additional datum has large variance in
a new direction orthogonal to all previous directions grows unlikely (Fig. 6), but as we move beyond
the interpolation threshold, the variance in each covariate dimension becomes increasingly clear.

Ablating the Divergence To test our understanding, we conduct three ablation experiments:

1. No Small Singular Values in Training Features: As we run the ordinary linear regression
fitting process, and as we sweep the number of training data, we also sweep different singular
value cutoffs and remove all singular values of the training features X below the cutoff.

2. Test Features Lie in the Training Features Subspace: As we run the ordinary linear regression
fitting process, as we sweep the number of training data, we project the test features x⃗test

onto the subspace spanned by the training features X singular modes.

3. No Residual Errors in the Optimal Model: We first use the entire dataset to fit a linear model
β⃗∗, then replace Y with Xβ⃗∗ and y∗test with x⃗test · β⃗∗ to ensure the true relationship is
linear. We then rerun our typical fitting process, sweeping the number of training data.
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Figure 6: Geometric intuition for why the smallest non-zero singular value reaches its lowest
value when approaching the interpolation threshold. As one nears the interpolation threshold
(here, D = P = N = 3), N training data are unlikely to vary substantially in P orthogonal directions,
meaning at least one orthogonal direction is likely to have small variance.

Figure 7: Henighan et al. 2023 [12] recently discovered a divergence in test loss at the interpolation
threshold in noiseless nonlinear autoencoders. Despite significant theoretical work in this area,
whether such a phenomenon should be expected is unclear because of the numerous assumptions and
particular model classes studied by prior work.

We find that each ablation partially or wholly prevents the divergence (Figs. 2 3 4).

3 Intuition Extends to Nonlinear Models

Although we mathematically studied ordinary linear regression, the intuition for why the test loss
diverges extends to nonlinear models, such as polynomial regression and including certain classes of
deep neural networks [13, 14, 7]. For a concrete example about how our intuition can shed light on
the behavior of nonlinear models, Henighan et al. 2023 [12] recently discovered interesting properties
of shallow nonlinear autoencoders: depending on the number of training data, (1) autoencoders either
store data points or features, and (2) the test loss increases sharply between these two regimes (Fig.
7). Our work sheds light on the results in two ways:

1. Henighan et al. write, “It’s interesting to note that we’re observing double descent in the
absence of label noise." Our work clarifies that noise, in the sense of a random quantity,
is not necessary to produce double descent. Rather, what is necessary is residual errors
from the perspective of the model class - E, in our notation. Those errors could be entirely
deterministic, such as a nonlinear model attempting to fit a noiseless linear relationship, or
other model misspecifications.

2. Henighan et al. write, “[Our work] suggests a naive mechanistic theory of overfitting
and memorization: memorization and overfitting occur when models operate on ‘data
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point features’ instead of ‘generalizing features’." Our work hopefully clarifies that this
terminology can be made more precise: when overparameterized, “data point features" are
akin to the Gram matrix XXT and when underparameterized, "generalizing features" are
akin to the second moment matrix XTX . Our work hopefully clarifies that “data point
features" can and very often do generalize, and that there is a deep connection between the
two, i.e., their shared spectra.
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A Why Gradient Descent Implicitly Regularizes

This is a sketch of why gradient descent implicitly regularizes. Suppose we have a model Xw for a
vector of data y ∈ Rn and want to minimize the norm of the error,

L(w) = ∥Xw − y∥22 = ∥e∥22
where we introduce some short-hand notation. We use the gradient learning rule,

w(t+ 1) = w(t)− ηXT e(t)

⇒ e(t+ 1) = e(t)− ηXXT e(t)

⇒ e(t+ 1) = (I − ηXXT )e(t)

Each matrix satisfies X ∈ Rn×d1 where n is the number of samples and d1 is the dimension of
each sample. In the overparameterized setting we have d1 > n and so XXT will generically have
full-rank and the error will go to zero.

This lies in the difference between XXT which appears here in the error analysis and XTX which
appears in the solution. So we can have XXT ∈ Rn×n generically full-rank only if we have more
parameters than there is data. On the other hand, we only have XTX full-rank if also it’s satisfied
that there is more data than parameters. This is important because in this case we can compute the
pseudo-inverse easily. Generically, we can show that if we use gradient descent we have something
like the following,

(XTX)−1X︸ ︷︷ ︸
left inverse

X−1︸︷︷︸
inverse

XT (XXT )−1︸ ︷︷ ︸
right inverse

for the cases where we are under-parameterized, minimally parameterized, or over-parameterized to
model the data.

So under gradient flow we’ll suppose the parameters update according to,

ẇ = −ηXT e

w(0) = 0

Observe that the gradient ẇ is invariantly in the span of XT so we may conclude that w(t) is always
in the span of XT . Generically, any solution in the over-parameterized setting is a global optimizer
such that Xw = y. This means that the limit of the flow can be written as w∗ = XTα for some
coefficient vector with the constraint that Xw∗ = y. After some manipulations we find that,

y = Xw∗ = XXTα

⇒ α = (XXT )−1y

⇒ w∗ = XT (XXT )−1y = X+y

This means that the solution X+ picked from gradient flow is the Moore-Penrose psuedoinverse.
This can be defined as the matrix,

X+ = lim
λ→0+

XT (XXT + λI)−1

Also observe that there is a unique minimizer for the regularized problem,

min
w

L(w) + λ∥w∥22

with value wλ = XT (XXT +λI)−1y. Perhaps, Xw = y has a set of solutions, but it is clear this set
is convex so there is a unique minimum norm solution. On the other hand, each wλ corresponds to a
best solution with norm below the minimum. However, we have w∗ = limλ→0+ wλ from continuity.
Since w∗ is an exact solution it can’t have less than the minimum-norm and it is clear w∗ can’t
have above the minimum-norm either since this is not the case for any of the wλ. We conclude that
gradient descent does indeed find the minimum norm solution.
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