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Abstract
We present FACADE, a novel probabilistic and
geometric framework designed for unsupervised
mechanistic anomaly detection in deep neural
networks. Its primary goal is advancing the un-
derstanding and mitigation of adversarial attacks.
FACADE aims to generate probabilistic distribu-
tions over circuits, which provide critical insights
to their contribution to changes in the manifold
properties of pseudo-classes, or high-dimensional
modes in activation space, yielding a powerful
tool for uncovering and combating adversarial
attacks. Our approach seeks to improve model ro-
bustness, enhance scalable model oversight, and
demonstrates promising applications in real-world
deployment settings.

1. Introduction
In recent years, the field of machine learning has witnessed
significant advancements propelled by improvements in
learning algorithms and increased access to computational
resources. These advancements have led to the development
of larger and more capable models, offering remarkable
performance on various tasks. However, as models grow in
size and complexity, their interpretability diminishes (Gao
& Guan, 2023). The sheer scale of modern deep learning
models renders traditional methods of interpretation, such
as feature importance or attribution, inadequate. The opac-
ity of these models hinders our ability to understand the
reasoning behind their predictions and opens the door to
potential adversarial attacks.

Moreover, complex models possess numerous axes along
which adversarial attacks can be targeted, making them
more vulnerable. Adversarial attacks exploit small, carefully
crafted perturbations to inputs that can mislead models into
making incorrect predictions (Chakraborty et al., 2021).
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With the increase in model complexity, the space of potential
adversarial perturbations expands exponentially, making
detection and mitigation increasingly difficult.

Furthermore, as AI capabilities continue to grow, and as the
freedoms afforded to such models continue to expand, the
implications of a hijacked model pose substantial risks to
society, for example through damage to critical systems or
infrastructure. Robust mechanisms are needed to detect and
prevent the misuse of models, especially as they become
more powerful and potentially capable of autonomously
evolving their behavior. An unsupervised framework for
detecting anomalous behavior in models can serve as a
crucial component in safeguarding against such risks.

In this paper, we propose mechanistic anomaly detection
via probabilistic models for circuit mechanisms within mod-
els as a scalable method for model oversight. Our novel
circuit-based framework aims to elucidate complex mech-
anistic pathways relevant to robustness and does so in an
unsupervised fashion without any priors as to the nature of
an adversarial attack. Our method develops probabilistic
models operating in the geometry of neural activation space
that facilitates the detection of deviations from the expected
behavior, thereby enabling the identification of anomalous
model outputs or adversarial attacks1.

2. Mechanistic Anomaly Detection
2.1. Activations

Previously, a detailed analysis of flows in activation space
proved computationally intensive and opaque. Insofar as
neural networks apply a series of nonlinear geometric trans-
formations to high-dimensional data manifolds, the propa-
gation of data points through these transformations is com-
putationally irreducible and largely uninterpretable directly
(Cohen et al., 2020). However, understanding the propaga-
tion of data points in the high-dimensional activation space
has profound implications for the reliability and security
of our models, and this understanding may hold the key to
investigating adversarial robustness.

1To understand how our proposal relates to emerging directions
in adversarial machine learning, see Carranza et al. (2023).
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Adversarial examples have been demonstrated to exploit
the complex, and often poorly understood, geometry of
the decision boundaries within this high-dimensional space
(Gebhart et al., 2019). Thus, developing methods capable
of elucidating these decision boundary structures and un-
derstanding the geometry of high-dimensional modes in
activation space would lead to improved adversarial robust-
ness. Prior literature and preliminary experiments demon-
strate that neural networks in activation space learn pseudo-
classes: intermediate groupings of features learned by the
model that resemble high-density modes (Gebhart et al.,
2019). An understanding of the distribution, composition,
and shape of pseudo-classes within a network offers a lens
into the mechanistic behavior of the model.

2.2. Circuit Mechanisms

As defined by Wang et al. (2022), a circuit is a subgraph
of a neural network’s overall computational graph. Small
circuits have recently been investigated for their role in
interpretability, in particular identifying circuits correspond-
ing to certain visually meaningful properties of an image,
e.g., orientation, curve-detection, color-detection circuits
(Olah et al., 2020). Circuits have been demonstrated as
a valuable intermediate between single-neuron and whole-
model holistic interpretability, as they are well-conserved
across mechanistically similar models and provide valuable
insights into model behavior for a wide variety of architec-
tures and datasets (Elhage et al., 2021).

Figure 1. The intermediate scale of interpretability is simultane-
ously the most poorly understood and the most complex, yet could
offer the greatest insights into MAD.

Problematically, circuit interpretability has focused over-
whelmingly on uncovering circuits responsible for specific
adversarially or visually meaningful features specified a
posteriori (Olah et al., 2020; Wang et al., 2022; Conmy
et al., 2023). Such an approach requires a specification of
the features used in an adversarial attack before circuit inter-
pretability is applied, which is rarely the case in a real-world

deployment setting (Carlini et al., 2019). Supervised circuit
interpretability also extrapolates poorly across mechanisti-
cally distinct models. We therefore motivate an unsuper-
vised circuit interpretability approach with the promise of
revealing novel insights into mechanistic anomalies, while
improving model invariance, computational efficiency, and
scalable model oversight.

2.3. Blue Sky MAD Approach

To identify adversarial examples, and their corresponding
circuits through mechanistic anomaly detection, we propose
a novel probabilistic, geometric framework for creating un-
supervised distributions over circuits in a deep neural net-
work titled FACADE: A Framework for Adversarial Circuit
Anomaly Detection and Evaluation. Specifically, we envi-
sion a four-step approach, where the hyperparameter λ can
be interpreted as setting the resolution of circuit analysis.

1. Utilize the probabilistic Dirichlet Process Mixture
model (Blei & Jordan, 2006; Kulis & Jordan, 2011) for
unsupervised clustering (DP-Means) to identify ”pseu-
doclass” modes in intermediate activation space for a
given density threshold λ (Dinari & Freifeld, 2022)

2. Elucidate circuits responsible for pseudoclass forma-
tion and propagation through causal discovery and Au-
tomatic Circuit DisCovery (ACDC) (Nauta et al., 2019)
(Conmy et al., 2023)

3. Determine manifold and kernel density properties of
pseudoclass propagation through circuits and in rela-
tion to final classes through mean-field theoretic ap-
proximation (Cohen et al., 2020)

4. Generate a distribution over circuits as they contribute
to changes in manifold properties of pseudoclasses
as they propagate through the network, e.g. effective
reduction in radius or dimension

Repeating the above algorithm for a sweep of λ values al-
lows for circuit distribution evaluation across a variety of fea-
tures and mechanistic pathways. By analyzing anomalous
circuits in the distribution or employing FACADE to prune
circuits, we envision significant gains in adversarial robust-
ness. Adversarial circuits, identified as probabilistic outliers
in geometric transformations, would stand out on FACADE
distributions and could easily be reverse-engineered to de-
rive how adversarially-susceptible pseudoclasses can be
made more robust by surgical tuning of weights. It is worth
noting that FACADE relies on sufficiently many training
examples to capture meaningful activation flows in an un-
supervised fashion. However, if this condition is met, at
test-time FACADE distributions with a simple probabilistic
thresholding approach can identify and prevent mechanistic
anomalies and adversarial attacks autonomously.
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