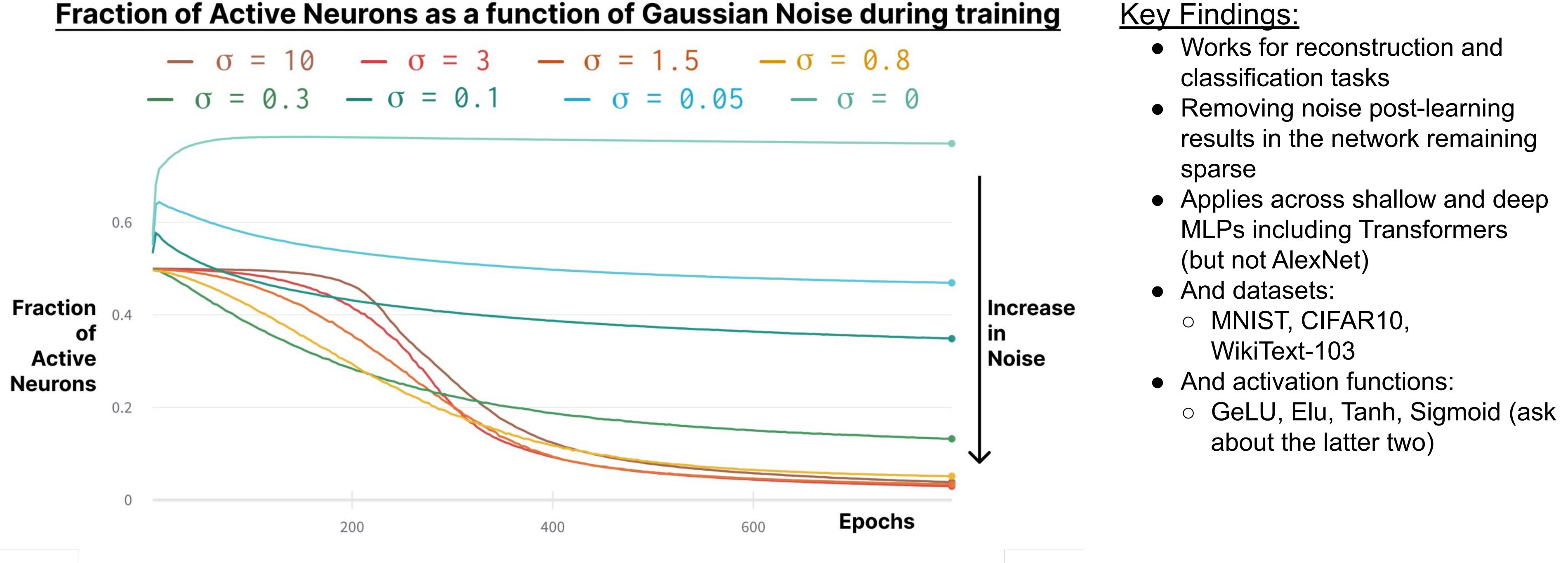
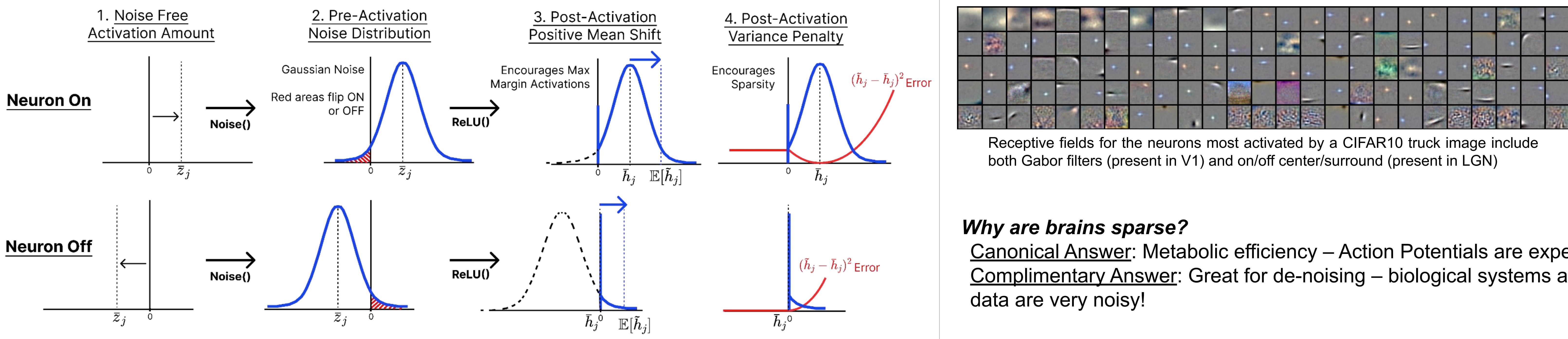


1. Noise \rightarrow Sparsity:



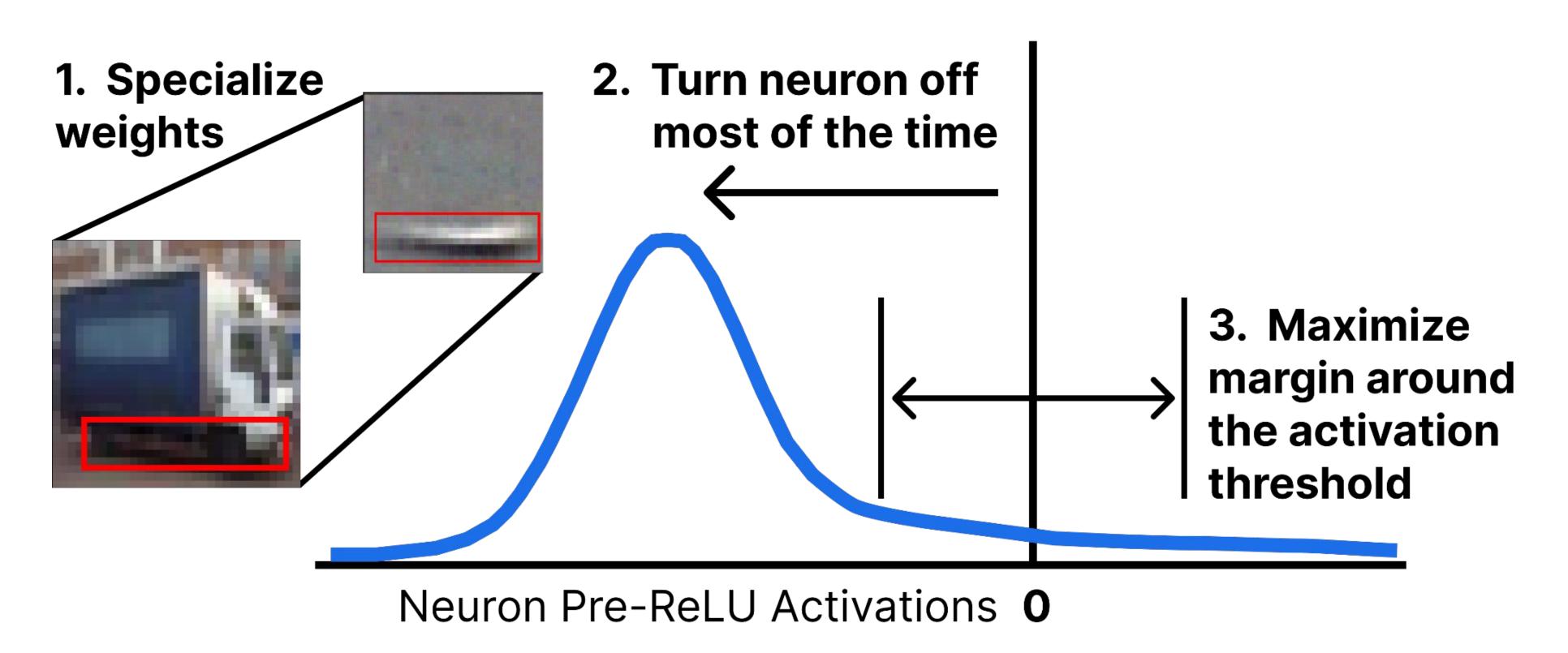
3. Noise → Flips Neurons On/Off:



Emergence of Sparse Representations from Noise Trenton Bricken^{1,2}, Rylan Schaeffer³, Bruno Olshausen², Gabriel Kreiman⁴

2. Noise → Three Implicit Loss Terms:

<u>Theoretical Distribution of Neuron Activations</u></u>



Noise Terms -> Maximize(

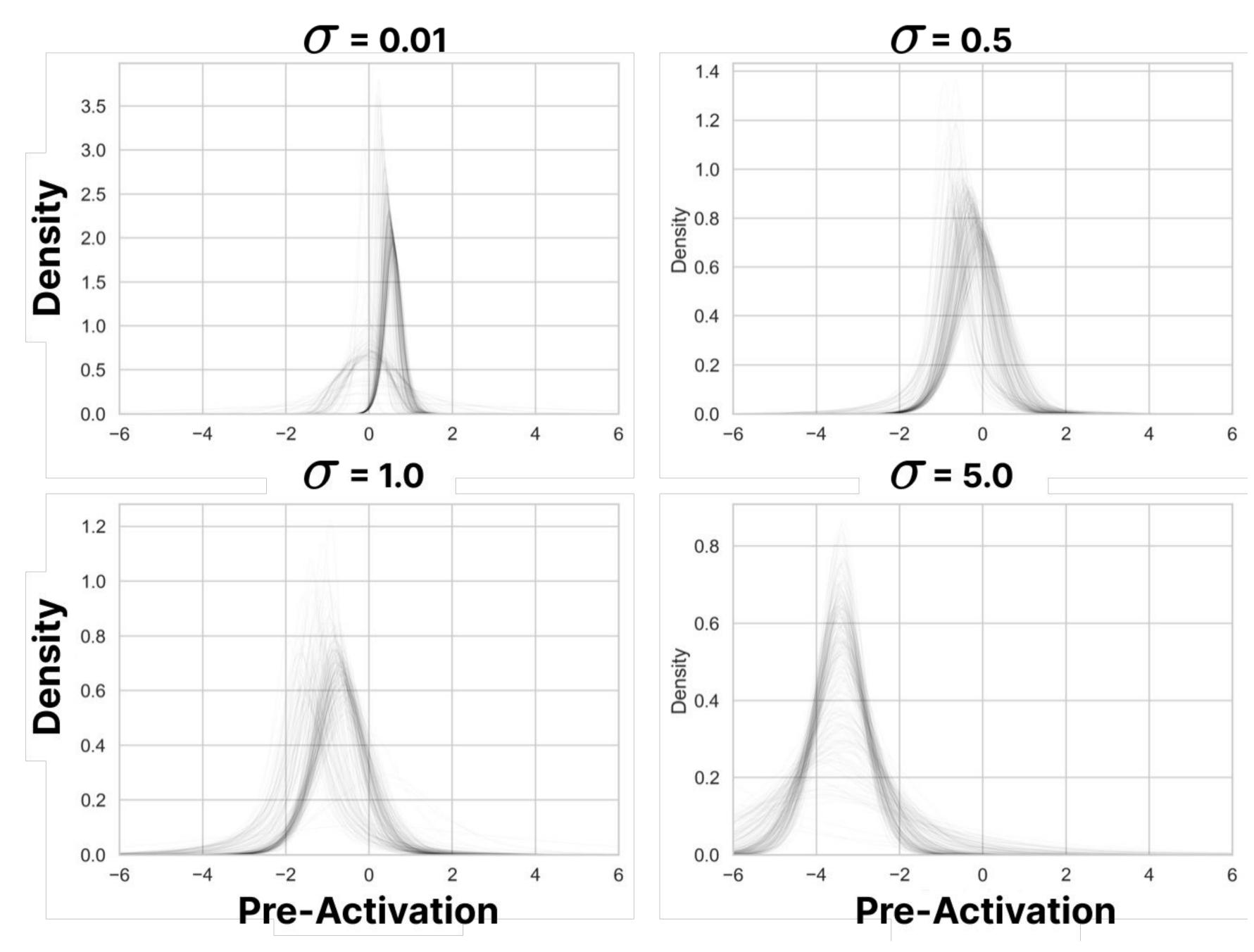
- [1. Neuron Sparsity] +
- [2. Neuron Activation Margin] +
- [3. Specialize Model Weights])

4. Noise -> Biological Receptive Fields

<u>Canonical Answer</u>: Metabolic efficiency – Action Potentials are expensive! <u>Complimentary Answer</u>: Great for de-noising – biological systems and sensory

- ¹ Systems, Synthetic and Quantitative Biology, Harvard University;
- ² Redwood Center for Theoretical Neuroscience, University of California, Berkeley;
- ³ Computer Science, Stanford University;
- ⁴ Programs in Biophysics and Neuroscience, Harvard Medical School.

Empirical Neuron Activations by Noise Scale



<u>Key Findings:</u>

- All bias terms and weight norms synchronize to a single scalar
 - Replacing biases with a single shared bias scalar has min. effect
- This results in a natural Top-K activation function emerging, similar to an inhibitory interneuron
- Top-K and Sparse coding (L1) penalty) don't produce on/off center/surround, only Gabors

