No Free Lunch from Deep Learning in Neuroscience

Rylan Schaeffer

Joint work with Mikail Khona & Ila Fiete

NeurIPS 2022

The claimed promise of deep networks in neuroscience

- Deep networks in neuroscience: not just a tool for data analysis, but a possible model of the brain
- 2 claimed promises for what deep learning can offer scientifically:
 - Deep networks can shed light on the brain's optimization problems
 - Deep networks can yield novel predictions about neural phenomena

In this paper, we ask: For grid cells, does deep learning deliver on either of these claims?

We studied recent deep learning models of hippocampus and medial entorhinal cortex

We showed deep learning models of neural circuits may tell us *less* about fundamental scientific truths and *more* about programmers' particular implementation choices, and as a result might be more post hoc than predictive.

Background: Grid Cells in Medial Entorhinal Cortex (MEC)

- Firing pattern of single grid cell forms a regular triangular lattice in physical space
- Grid cells display different scales, orientations and phases
- Grid cells display only a few different periods (scales)

https://www.nature.com/articles/nrn3766.pdf

What insight(s) have deep learning models claimed to offer?

Claim: "Path integration causes the formation of grid cells"

Letter Published: 09 May 2018

Vector-based navigation using grid-like representations in artificial agents

Andrea Banino , <u>Caswell Barry</u>, ... <u>Dharshan Kumaran</u> + Show authors <u>Nature</u> 557, 429–433 (2018) Cite this article A unified theory for the origin of grid cells through the lens of pattern formation

Ben Sorscher*¹, Gabriel C. Mel*², Surya Ganguli¹, Samuel A. Ocko¹ ¹Department of Applied Physics, Stanford University ²Neurosciences PhD Program, Stanford University

"Our results show that grid-like representations reminiscent of those found in the mammalian entorhinal cortex emerge in a generic network trained to path integrate" "Remarkably, in each case the networks learn [...] grid–like representations"

"diverse architectures [...] all converge to a grid-like solution"

"Path integration causes the formation of grid cells" (?)

Previous work: presents story that path integration drives the formation of grid cells

Our work: (1) path integration does not require grid cells, (2) grid-like units emerge in a very small fraction of hyperparameter space, (3) only under biologically invalid implementation choices, and (4) lack key properties of biological grid cells

Deep learning path integration model setup

6

Result #1: Most networks accurately path integrate...

Fraction of Runs with Low Position Decoding Error (<10.0 cm)

Result #1: Most networks accurately path integrate, but few learn possible grid-like units

1.0 0.8 0.6 0.4 0.2 0.0 Cartesian DoS SoD Cartesian Polar Gaussian DoG Low Dim N = 1265N = 1103N = 1689N = 71High Dim High Dim N = 2516N = 3793N = 1171

Fraction of Runs with Possible Grid Cells (Max Grid Score > 0.8) | Low Position Decoding Error

cf. Sorscher et al. 2019: "Remarkably, in each case the networks learn [...] grid-like representations"

Result #2: Grid-like units only emerge under one specific encoding of position

Cartesian

Polar

Gaussian Place Cells Difference-of-Softmaxes Place Cells

Emergence of grid-like units requires post-hoc constraints that are biologically invalid for many reasons

- To obtain grid-like units, artificial place cells must have:
 - single scale across the population
 - single field per cell
 - isotropic tuning curves with...
 - …a Difference-of-Softmaxes functional form

Emergence of grid-like units requires post-hoc constraints that are biologically invalid for many reasons

- Biological place cells are the opposite
 - heterogeneous scales across the population
 - multiple fields per cell
 - anisotropic tuning curves with...
 - ...no clear functional form

Result #3: Grid-like units lack key properties of biological grid cells (multiple modules, specific ratios)

Each network learns 1 periodicity (1 peak) cf. biological grid cells display multiple peaks Result #4: Small perturbations to ideal hyperparameters prevent the formation of grid-like units

13

Result #5: Under more biologically plausible conditions, grid-like units do not emerge (without harming nerformance) 1.22 1.0 0.97 0.96

14

N = 6

Result #6: First-principles models can explain all these findings!

$$\dot{r}(x) = -r(x) + g(W \star r)$$

If interaction is translationally invariant: $W(x, x') = W(x - x') = W(\Delta x)$

We

We can linearize:
$$\dot{r}(x) \sim -r(x) + f(\Delta x) \star r$$

Fourier transform: $\dot{\tilde{r}}(k) = -\tilde{r}(k) + \tilde{f}(k)\tilde{r}(k)$

Formed pattern scale: $k^* = \operatorname{argmax}_{k} \tilde{f}(k)$

Result #6: First-principles models can explain all these findings!

For MSE reconstruction error: $||P - W_{\text{readout}}r||^2$

Sorscher et al(2019): $\dot{r} = -\lambda r + \Sigma r$

where $\Sigma = PP^T$

Place cell correlation matrix

Difference of Gaussians: $W(\Delta x) \equiv f(\Delta x) = \alpha_E \exp\left(-\frac{(\Delta x)^2}{2\sigma_E^2}\right) - \alpha_I \exp\left(-\frac{(\Delta x)^2}{2\sigma_I}\right)$

$$\tilde{f}(k) = \int_{\mathscr{R}} d(\Delta x) f(\Delta x) e^{ik\Delta x} = \alpha_E \sigma_E \exp\left(-\frac{\sigma_E^2 k^2}{2}\right) - \alpha_I \sigma_I \exp\left(-\frac{\sigma_I^2 k^2}{2}\right)$$

Non-zero maxima = pattern formation!
$$[k^*]^2 = \frac{2}{\sigma_E^2 - \sigma_I^2} \log(\alpha_E \sigma_E^3 / \alpha_I \sigma_I^3)$$

Result #7: Unmentioned implementation details are necessary for the formation of grid-like units

$$p_i(x) = e^{-||x-c_i||^2/2\sigma_1^2} - e^{-||x-c_i||^2/2\sigma_2^2}$$

Paradox: How do networks predict neural activity so well?

- Nayebi et al. NeurIPS 2021 (Spotlight) found that these networks could explain variance in mouse MEC neural activity, comparable to variance explained by other mice's MEC neural activity
- Lent additional support that these networks are good models of MEC-HPC
- However, these networks are inconsistent with (a) key biological features of grid cells (e.g., learning only a single module), and (b) multiple known properties of place cells (e.g. requiring single field, single scale, isotropic Difference-of-Softmax tuning curves)
- Paradox: How do these networks predict mouse MEC neural activity so well?

Paradox: How do networks predict neural activity so well?

- Hypothesis: Different networks provide different dimensional bases for the regression comparisons, thereby achieving higher (test) correlations
- Data and analysis code were not public, but we have preliminary supporting evidence:

Q: Why are there no models with high ED, but low brain match?

Conclusion: No Free Lunch with Deep Learning Models for Neuroscience

You have found an optimization problem to train a network to replicate the brain's neural tuning. But multiple optimization problems can share an optimum → brain could be solving a different optimization problem.

For an optimization problem correctly matched to one the brain is solving, a model may learn a different optimum that yields different neural tuning → model is not a predictive model of tuning.

