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The claimed promise of deep networks in neuroscience

- Deep networks in neuroscience: not just a tool for data analysis, but a possible
model of the brain
- 2 claimed promises for what deep learning can offer scientifically:
- Deep networks can shed light on the brain’s optimization problems
- Deep networks can yield novel predictions about neural phenomena

In this paper, we ask: For grid cells, does deep learning deliver on either of these
claims?

We studied recent deep learning models of hippocampus and medial entorhinal
cortex

We showed deep learning models of neural circuits may tell us less about
fundamental scientific truths and more about programmers’ particular implementation
choices, and as a result might be more post hoc than predictive. 2
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What insight(s) have deep learning models claimed to offer?

Claim: "Path integration causes the formation of grid cells”

Letter | Published: 09 May 2018
Vector-based navigation using grid-like
representations in artificial agents

Andrea Banino &, caswell Barry & ... Dharshan Kumaran + Show authors

Nature 557, 429-433 (2018) | Cite this article

“Our results show that grid-like representations
reminiscent of those found in the mammalian entorhinal
cortex emerge in a generic network trained to path
integrate”

A unified theory for the origin of grid cells through
the lens of pattern formation

Ben Sorscher*!, Gabriel C. Mel**, Surya Ganguli', Samuel A. Ocko'
! Department of Applied Physics, Stanford University
Neurosciences PhD Program, Stanford University

“Remarkably, in each case the networks learn [...] grid-like
representations”

“diverse architectures [..] all converge to a grid-like
solution”



"Path integration causes the formation of grid cells” (?)

Previous work: presents story
that path integration drives
the formation of grid cells

Our work: (1) path integration does not
require grid cells, (2) grid-like units
emerge in a very small fraction of
hyperparameter space, (3) only under
biologically invalid implementation
choices, and (4) lack key properties of
biological grid cells



Deep learning path integration model setup
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Result #1: Most networks accurately path integrate...

Fraction of Runs with Low Position Decoding Error (<10.0 cm)
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Result #1: Most networks accurately path integrate, but
few learn possible grid-like units

Fraction of Runs with Possible Grid Cells (Max Grid Score > 0.8) | Low Position Decoding Error
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cf. Sorscher et al. 2019: “Remarkably, in each case the networks learn [...] grid-like representations”



Result #2: Grid-like units only emerge under one specific
encoding of position
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Emergence of grid-like units requires post-hoc
constraints that are biologically invalid for many reasons

- To obtain grid-like units,
artificial place cells must have:
- single scale across the
population
- single field per cell

- isotropic tuning curves with...
- ..a Difference-of-Softmaxes
functional form

Artificial Tuning Curve
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Emergence of grid-like units requires post-hoc constraints
that are biologically invalid for many reasons

: : ) 100
- Biological place cells are the
opposite a7
- heterogeneous scales across the SRR G
population @
. . 2 60
- multiple fields per cell }5’
- anisotropic tuning curves with... |5 \equa| Poisson
- ..no clear functional form E =0

0 5 10 15 20 25 30
place fields per cell

Rich et al, Science(2014)

Biological Tuning Curves
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Result #3: Grid-like units lack key properties of biological
grid cells (multiple modules, specific ratios)
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Result #4: Small perturbations to ideal hyperparameters
prevent the formation of grid-like units
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Result #5: Under more biologically plausible conditions,
grid-like units do not emerge (without harming
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Result #6: First-principles models can explain all these
findings!

F(x)=—r(x)+g(Wxr)

i interaction is translationally invariant: TA/ (x, x’) = W (x — x’) = W(Ax)
We can linearize: (X ) ~ —r(x) + f(Ax) *r
Fourier transtorm: (k) = —F (k) + f (k)7 (k)

Formed pattern scale:  Je* — argmanf(k)
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Result #6: First-principles models can explain all these
findings!

For MSE reconstruction error: ||P — Weaqou |2 where 3} = PPT

. Place cell correlation matrix
Sorscher et al(2019): I = —Ar + Xr
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Result #7: Unmentioned implementation details are
necessary for the formation of grid-like units
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Paradox: How do networks predict neural activity so well?

- Nayebi et al. NeurIPS 2021 (Spotlight) found that these networks could
explain variance in mouse MEC neural activity, comparable to variance
explained by other mice's MEC neural activity

- Lent additional support that these networks are good models of MEC-HPC

- However, these networks are inconsistent with (a) key biological features
of grid cells (e.g., learning only a single module), and (b) multiple known
properties of place cells (e.g. requiring single field, single scale, isotropic
Difference-of-Softmax tuning curves)

- Paradox: How do these networks predict mouse MEC neural activity so
well?
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Paradox: How do networks predict neural activity so well?

- Hypothesis: Different networks provide different dimensional bases for the
regression comparisons, thereby achieving higher (test) correlations

- Data and analysis code were not public, but we have preliminary
supporting evidence:
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Q: Why are there no models with high ED, but low brain match?
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Conclusion: No Free Lunch with Deep Learning Models for
Neuroscience

You have found an optimization
problem to train a network to replicate
the brain’s neural tuning. But multiple
optimization problems can share an
optimum -> brain could be solving a
different optimization problem.

For an optimization problem A

correctly matched to one the r
brain is solving, a model may

learn a different optimum that £
yields different neural tuning >

model is not a predictive M
model of tuning. T brain




