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Summary

In disagreement with the main messages of [1, 2, 6, 8, 9], we demonstrate:

1. Recurrent networks trained to path integrate almost always solve the task,
but almost never learn grid-like representations...

2. ...unless inserted via an intentionally-chosen & fine-tuned supervised
target readouts designed to produce the grid result, meaning obtaining
grid cells is post-hoc

3. The resulting grid-like units lack key properties of biological grid cells
4. The assumptions and target readouts may not be biologically plausible
5. Prior theory is suggestive, not exact or comprehensive

Prior approaches overstate the task of path integration and understate the
role of the readout

How does the mammalian brain represent space?

Figures from New York Times & Moser et al. 2014.

What insight(s) has deep learning claimed to offer?

Claim: The task of path integration generically causes the
formation of grid cells

[2]: “We first trained a recurrent network to perform path integration,
leading to the emergence of representations resembling grid cells, as well
as other entorhinal cell types”
[2]: “Notably, therefore, our results show that grid-like representations
reminiscent of those found in the mammalian entorhinal cortex emerge in
a generic network trained to path integrate.”
[8]: “Here we forge an intimate link between the computational problem
of path-integration and the existence of hexagonal grids, by demonstrating
that such grids arise generically in biologically plausible neural networks
trained to path integrate. Moreover, we develop a unifying theory for why
hexagonal grids are so ubiquitous in path-integrator circuits.”
[1]: “We trained recurrent neural networks (RNNs) to perform navigation
tasks in 2D arenas based on velocity inputs. Surprisingly, we find that
grid-like spatial response patterns emerge in trained networks."
[9]: “RNNs trained to path integrate with nonnegative firing develop
hexagonal grid cells."

Experimental Setup & Summarized Results
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The task of path integration is not sufficient to
produce grid-like representations
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Grid-like units emerge only with fine-tuning one specific spatial readout

Prior theory: a theory of readout correlations

Starting with a linear readout reconstruction error,
E(G , W ) = ||P − P̂ ||2F where P̂ = GW

[6, 9] simplifies to a Lagrangian: L = Tr [GT ΣG − λ(GT G − I)]. Here,
Σx ,x ′ =

∑
pi(x)pi(x ′) is readout correlation matrix. Optimal solution to g is

top eigenvectors of Σ, which for isotropically distributed, single scale readouts
with DoG shape is comprised of periodic patterns. Thus:

Studying learnt representations in these networks
⇓

Studying the correlational structure of readouts
⇓

Representations learnt by these networks are wholly determined by choice
of spatial readout (a design choice), not task of path integration.

Grid-like units lack key properties of real grid cells
a b c

Grid periods are set by a hyperparameter & multiple modules do not emerge

With multiple scales and fields, no grid units form
a b c

Gaussian readouts do not generically yield lattices

A: σE = 5 cm, sweeping arch. & seed (>12k units). B: RNNs, sweeping
σE ∈ [5, 50] cm (>177k units) by 2.5 cm incr. C: [4] independently confirm.

Gaussian readouts yield grid-like units under post hoc
implementation details not captured by theory

(A) Claimed lattices from [6, 9]. (B) Rerunning degrades lattices. (C) Chang-
ing batch size or (D) removing dropout lowers loss and removes lattices.

Ideal DoG place cells with non-negative activations
drive hexagonal and square lattices

[6, 9] capture effect of non-negative nonlinearities by adding cubic term in the
position-encoding Lagrangian that penalizes non-negativity (σ0g3).

L = gT Σg + λ(1 − gT g) + σ0g3

In Fourier space this term favors hexagonal patterns and thus predicts that
ReLU activations favor hexagonal patterns [6, 9]:

Lint =
∫

k⃗ ,⃗k ′,⃗k ′′
g̃(k)g̃(k ′)g̃(k ′′)δ(k⃗ + k⃗ ′ + k⃗ ′′)

Results from recurrent network training are partially mismatched to theory

High sensitivity to implementation details
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[7] contested the finding (left); rerunning with 1024 ⇒ 4096 units reproduces
it (right). This exchange fortifies claim that grids are post-hoc: all 3 sweeps
learn to path integrate, thus per theory of [6, 9], all should learn grids, but
post-hoc implementation details are necessary.

Paradox: How networks in [3] predict neural activity?
x

3 independent labs studying different modalities, brain regions, species, and
recording methods found networks with higher participation ratio achieve
higher test R2. A: ours; B: Elmoznino et al. 2022; C: Tuckute et al. 2022.

Conclusion

Challenges with using deep learning
models in neuroscience: Top: Building a
model that replicates neural responses does
not guarantee that optimization problem is
the brain’s problem, since multiple problems
can share a solution. Bottom: Training net-
works on the plausible/correct optimization
problem need not yield the brain’s solution,
without sufficient amounts of inductive biases.
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