

Summary

In disagreement with the main messages of [1, 2, 6, 8, 9], we demonstrate:

- Recurrent networks trained to path integrate almost always solve the task, but almost never learn grid-like representations...
-unless inserted via an intentionally-chosen & fine-tuned supervised target readouts designed to produce the grid result, meaning obtaining grid cells is post-hoc
- 3. The resulting grid-like units lack key properties of biological grid cells
- 4. The assumptions and target readouts may not be biologically plausible
- 5. Prior theory is suggestive, not exact or comprehensive

Prior approaches overstate the task of path integration and understate the role of the readout

How does the mammalian brain represent space?

Figures from New York Times & Moser et al. 2014.

What insight(s) has deep learning claimed to offer?

Claim: The task of path integration generically causes the formation of grid cells

- [2]: "We first trained a recurrent network to perform path integration, leading to the emergence of representations resembling grid cells, as well as other entorhinal cell types"
- [2]: "Notably, therefore, our results show that grid-like representations reminiscent of those found in the mammalian entorhinal cortex emerge in a generic network trained to path integrate."
- [8]: "Here we forge an intimate link between the computational problem of path-integration and the existence of hexagonal grids, by demonstrating that such grids arise generically in biologically plausible neural networks trained to path integrate. Moreover, we develop a unifying theory for why hexagonal grids are so ubiquitous in path-integrator circuits."
- [1]: "We trained recurrent neural networks (RNNs) to perform navigation tasks in 2D arenas based on velocity inputs. Surprisingly, we find that grid-like spatial response patterns emerge in trained networks."
- [9]: "RNNs trained to path integrate with nonnegative firing develop hexagonal grid cells."

No Free Lunch from Deep Learning in Neuroscience

¹Stanford Computer Science

²MIT Physics

Rylan Schaeffer ^{1,3} Mikail Khona ^{2,4} Ila Rani Fiete ^{3,4}

³MIT Brain and Cognitive Sciences

⁴MIT McGovern Institute

: 7 8 🔍 🔶 📖 😣	😇 🖂 🖉 🙋 🚺 🖉 💭	N N N N N N N N	M 🕄 🔊 🖉 🖉 🖉 🖉
	K 51 2 K 12 K 10 K 10 K 10 K	🚳 🖭 🕮 🎥 🚬 🙋 🎇 🕋	
	R 12 S 5 S 6 S 5 S	💽 🌆 🚛 👯 🎆 🌠	F-4 C 🕅 🖻 🖌 🖉
	4 1 2 3 3 2 2 2	X 🕼 🎆 😪 🏗 🕮 🛀 👬	o 22376 Y N
	S	📰 💥 📰 🌾 斜 📰 🍇 💥	Q 🗩 🖉 🕅 To 🖉 💵 🖄
	22 SS 🔊 77 SQ 🚺 🕅 🔘	📄 🐼 🕋 🕺 💥 🏭 🚮 🕅	
N 🗟 😫 😹 🔜 🤝	S 2 2 8 4 2 2 3	S 🗗 🐼 🔊 況 🔃 🚜 🤵	ye 🖬 🔯 🌽 🔛 🖉 🖌 🔪
e 🖉 🖉 😫 🖉 😂	💊 5J 🗙 9- 81 27 59 🥥		 M (a) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c

$$\mathcal{L} = g^T \Sigma g + \lambda (1 - g^T g) + \sigma_0 g^3$$

$$\mathcal{L}_{int} = \int_{\vec{k},\vec{k}',\vec{k}''} \tilde{g}(k) \tilde{g}(k') \tilde{g}(k'') \delta(\vec{k}+\vec{k}'+\vec{k}'')$$

[7] contested the finding (left); rerunning with $1024 \Rightarrow 4096$ units reproduces it (right). This exchange fortifies claim that grids are post-hoc: all 3 sweeps learn to path integrate, thus per theory of [6, 9], all should learn grids, but post-hoc implementation details are necessary.

Paradox: How networks in [3] predict neural activity?

3 independent labs studying different modalities, brain regions, species, and recording methods found networks with higher participation ratio achieve higher test R². A: ours; B: Elmoznino et al. 2022; C: Tuckute et al. 2022.

Challenges with using deep learning models in neuroscience: Top: Building a model that replicates neural responses does not guarantee that optimization problem is the brain's problem, since multiple problems can share a solution. Bottom: Training networks on the plausible/correct optimization problem need not yield the brain's solution, without sufficient amounts of inductive biases.

- [1] Cueva and Wei. *ICLR*, 2018. [2] Banino et al. Nature, 2018.
- [3] Nayebi et al. NeurIPS, 2021.
- [4] Xu et al. PMLR Symmetry and Geometry in Neural Representations, 2022.
- [5] Schaeffer, Khona, and Fiete. *bioRxiv*, 2022.
- [6] Sorscher, Mel, Ganguli, and Ocko. NeurIPS, 2019
- [7] Sorscher, Mel, Nayebi, Giocomo, Yamins, and Ganguli. *bioRxiv*, 2022.

High sensitivity to implementation details

Conclusion

References

- [8] Sorscher, Mel, Ocko, Giocomo, and Ganguli. *bioRxiv*, 2020.
- [9] Sorscher, Mel, Ocko, Giocomo, and Ganguli. *Neuron*, 2022.