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Motivation

• Clustering (mixture modeling) is a ubiquitous problem

• The Chinese Restaurant Process is a Bayesian Nonparametric

model that allows the number of clusters to grow as more

data are observed

• Common inference algorithms are formulated for the offline

setting and scale poorly with the number of observations
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Chinese Restaurant Process
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Chinese Restaurant Process (CRP)

• CRP(α) is a single-parameter stochastic process that defines

a distribution over partitions of a set

• CRP defines a conditional for t-th customer zt given previous

customers z<t and number of nonempty tables Kt−1:

P(zt = k |z<t , α) =


∑

t′<t δ(zt′=k)

α+t−1 if 1 ≤ k ≤ Kt−1
α

α+t−1 if k = Kt−1 + 1

0 otherwise
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Research Objective

• Generative process: stream of discrete latent variables z1:T

and observations o1:T

z1:T ∼ CRP(α)

ot |zt ∼ p(o|z)

• Goal: infer (filter) p(zt |o≤t), subject to two constraints:

1. Inference must be performed online, meaning the filter cannot

make use of the (possibly) infinite past nor can the filter be

used to revise the past.

2. Inference must be efficient in the large t (sample) limit
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Recursion for Online Filtering

• Streaming inference is difficult because CRP’s conditional

distribution p(zt |z<t , α) is dependent on the entire history

• Approach: replace conditional with a recursively computed

marginal distribution p(zt |α)

• Bayes’ Theorem

p(zt = k |o≤t)︸ ︷︷ ︸
Latent Posterior

=
p(ot |zt = k)

p(ot |o<t)
p(zt = k|o<t)︸ ︷︷ ︸

Latent Prior

.

• Latent prior is the expected conditional distribution, averaged

over all possible paths

p(zt = k|o<t)︸ ︷︷ ︸
Latent Prior

= Ep(z<t ,Kt−1|o<t)

[
p(zt = k |z<t ,Kt−1, o<t)

]
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Recursion for Online Filtering

• Making one approximation, we obtain the R-CRP recursion:

p(zt = k|o≤t)︸ ︷︷ ︸
Latent Posterior

≈ p(ot |zt = k)

p(ot |o<t)

[
1

α + t − 1

∑
t′<t

p(zt′ = k |o≤t′)︸ ︷︷ ︸
Previous Posteriors

+
α

α + t − 1
p(Kt−1 = k − 1|o<t)

]

• Intuition:

• First term is running sum of preceding latents’ posteriors’

masses, which means commonly used clusters will probably

generate the next observation

• Second term is the number of clusters, which grows over time,

incentivizing creation of new clusters
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Recursion for Online Filtering
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Experiments: CRP Prior

R-CRP is exact for CRP prior:
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Experiments: CRP Prior

R-CRP is exact for CRP prior:
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Experiment: Mixtures of Gaussians

R-CRP finds highly plausible centroids and cluster assignments
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Experiment: Mixtures of Gaussians

R-CRP learns (close to) the correct number of clusters over wide

range of concentration parameters
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Experiment: Mixtures of Gaussians

R-CRP has higher adjusted mutual information with true cluster

labels than most baselines over range of concentration patameters
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Experiment: Handwritten Characters (Omniglot)

R-CRP learns (close to) the correct number of clusters over wide

range of concentration parameters
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R-CRP has higher adjusted mutual information with true cluster

labels than online baselines over range of concentration patameters

15


