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Abstract

Natural data are often well-described as belong-
ing to latent clusters. When the number of clusters
is unknown, Bayesian nonparametric (BNP) mod-
els can provide a flexible and powerful technique
to model the data. However, algorithms for infer-
ence in nonparametric mixture models fail to meet
two critical requirements for practical use: (1) that
inference can be performed online, and (2) that
inference is efficient in the large time/sample limit.
In this work, we propose a novel Bayesian recur-
sion to efficiently infer a posterior distribution over
discrete latent variables from a sequence of obser-
vations in an online manner, assuming a Chinese
Restaurant Process prior on the sequence of latent
variables. Our recursive filter, which we call the
Recursive Chinese Restaurant Process (R-CRP),
has quasilinear average time complexity and loga-
rithmic average space complexity in the total num-
ber of observations. We experimentally compare
our filtering method against both online and of-
fline inference algorithms including Markov chain
Monte Carlo, variational approximations and DP-
Means, and demonstrate that our inference algo-
rithm achieves comparable or better performance
for a fraction of the runtime.

1 INTRODUCTION

Since the introduction of the Hidden Markov Model [Baum
and Petrie, 1966], latent-variable models have become a
common starting point for modeling temporal data. When
the sample space of latent variables is unknown (or growing
over time), Bayesian nonparametric models (BNP; Hjort, N.
et al. [2010]) provide a probabilistic framework for allowing
a model to grow in complexity as more data are observed.
One common BNP model, useful for mixture modeling, is

the Chinese Restaurant Process (CRP; Blackwell and Mac-
Queen [1973], Aldous [1985]) and its de Finetti mixing
distribution, the Dirichlet Process (DP; Ferguson [1973],
Antoniak [1974]). However, inference algorithms for these
clustering models suffer from two key limitations. First,
inference algorithms are formulated for the offline setting,
in which the entire sequence of observations is available.
Second, the algorithms’ computational complexity scales
poorly with sequence length. These limitations make practi-
cal use of these models in the streaming setting difficult, if
not impossible.

To provide a concrete example of the kind of problem we
wish to solve, imagine an intrepid field biologist seeking to
determine the impact of deforestation on bird diversity in the
Amazon. Year after year, she ventures into the jungle to ob-
serve birds and sort her observations into species, including
potentially previously undiscovered ones. She cannot bag
all the birds she observes, and instead has to make on-the-fly
determinations of species and counts within each species.

In this paper, we construct an efficient filter that this biol-
ogist could use. We place a CRP prior on the sequence of
latent states and propose a novel inference algorithm, the
Recursive Chinese Restaurant Process (R-CRP), which fil-
ters a posterior over latent states. Assuming the posterior
behaves asymptotically like the prior, our algorithm has
average case time complexity O(t log t) and average case
space complexity O(log t), where t is the number of obser-
vations. R-CRP is a Bayesian recursion that constructs the
prior for the current latent state (henceforth referred to as
the latent prior) as a running sum of the posteriors for previ-
ous latent states. We then show that our online algorithm is
competitive with commonly used offline and online infer-
ence algorithms. Our code is publicly available at github.
com/RylanSchaeffer/FieteLab-RCRP.

Related Work: Many BNP latent variable models for time
series exist, including infinite Hidden Markov Models (Beal
et al. [2002]) and dependent Dirichlet Processes (MacEach-
ern, Steven [1999], Lin et al. [2010]). Inference algorithms
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fall into several categories, including (sequential) Monte
Carlo (Neal [2000], Fearnhead [2004], Ulker et al. [2010]),
variational inference (Blei and Jordan [2006], Zhang and
Paisley [2016]), maximum a-posteriori estimates (Anderson
[1991], Broderick et al. [2013]) and low variance asymptotic
approximations (Kulis and Jordan [2012], Campbell et al.
[2013]). Many of these inference algorithms make multi-
ple passes through the entire sequence of observations (e.g.
Zhang and Paisley [2016]), while others re-infer posteriors
over the entire latent sequence with each new observation
(e.g. Bartunov and Vetrov [2014]) or collapse probabilis-
tic quantities into point estimates (e.g. Kulis and Jordan
[2012]).

A smaller body of work specifically addresses on-
line/streaming inference in nonparametric mixture models.
Fearnhead [2004] introduced a sequential Monte Carlo al-
gorithm with a heuristic to keep the number of particles
manageable. Wang and Dunson [2011] proposed a maxi-
mum a-posteriori algorithm SUGS that greedily chooses the
best possible cluster assignment for each observation, which
was extended by Zhang et al. [2014] to the variational Bayes
setting. Lin [2013] similarly introduces an online variational
inference algorithm. Although not discussed in the original
paper, Kulis and Jordan [2012]’s DP-Means can readily be
extended to the streaming setting in the same manner that
K-Means can be extended to the streaming setting. Most
relevant to our work is Liu et al. [2014]’s Online Chinese
Restaurant Process. Our work differs from theirs in three
key ways. First, our algorithm does not require the sequence
of latent variables to be exchangeable, allowing us to lay
the groundwork for subsequent filters that are performant
even if latent variables are non-exchangeable. Second, our
algorithm does not rely on the correct values of previous
latent variables being made available at later times, to al-
low retroactive corrections in a supervised fashion. Third,
our algorithm is a Bayesian recursion that maintains full
distributions at all times, whereas their algorithm relies on
sampling. Our recursion R-CRP is also similar to Newton
[1999, 2002]’s Predictive Recursion, but differs in that their
algorithm is not designed for the online setting and their
algorithm averages over permutations of the observations.

2 BACKGROUND

2.1 GENERATIVE PROCESS

We consider a latent-variable time series model with discrete
latent variables z1:T and observable variables o1:T , where
·1:T denotes the sequence (·1, ·2, ..., ·T ). Our generative pro-
cess assumes a Chinese Restaurant Process (CRP) prior over
the sequence of latent states:

z1:T ∼CRP(α)

ot |zt ∼ p(o|z)
(1)

2.2 CHINESE RESTAURANT PROCESS

The Chinese Restaurant Process (CRP; Blackwell and Mac-
Queen [1973], Aldous [1985]) is a one-parameter (concen-
tration parameter α > 0) stochastic process that defines a
discrete distribution over the partitions of a set. The CRP
defines a conditional distribution for the tth categorical vari-
able zt given the preceding variables:

p(zt = k|z<t ,α) =


∑

t−1
t′=1

I(zt′=k)
α+t−1 if 1≤ k ≤ Kt−1

α

α+t−1 if k = Kt−1 +1
0 otherwise

(2)

where Kt is the integer number of categories (clusters) with
at least one variable in {zt ′}t ′=1

t ′=1 belonging to that category
(cluster). The term CRP arises from an analogy of seating a
sequence of customers at a Chinese restaurant that has an
infinite number of tables, each with an infinite number of
chairs. Each customer is randomly placed either at a popu-
lated table with probability proportional to the number of
previous customers at that table, or at a new, un-populated
table with probability proportional to α . Kt denotes the num-
ber of non-empty tables after the t-th customer is seated. The
CRP can be equivalently defined using indicator variables,
a fact we later exploit:

p(zt = k|z<t ,α) =
1

α + t−1 ∑
t ′<t

1(zt ′ = k ≤ Kt−1)

+
α

α + t−1
I(k = Kt−1 +1)

(3)

2.3 CHINESE RESTAURANT TABLE
DISTRIBUTION

The (random) number of non-empty tables after t customers
have been seated Kt is described by the Chinese Restaurant
Table (CRT) distribution:

p(Kt = k) =
Γ(α)

Γ(t +α)
|s(t,k)|αk

1(k ≤ t) (4)

where |s(t,k)| are unsigned Stirling numbers of the first
kind. The CRT can equivalently be defined as a sum of in-
dependent but non-identically distributed Bernoulli random
variables indicating the tth customer was placed at a new
table.

Kt =
t

∑
t ′=1

bt ′ where bt ′ ∼ Bernoulli
(

α

α + t ′−1

)
Per Le Cam’s Theorem (Le Cam [1960]), Kt is well approx-
imated by a Poisson distribution with rate λ = α log(1+
t/α), showing that the average number of tables grows log-
arithmically with t. This detail becomes important in our
complexity analysis.



Figure 1: Visualization of Recursion. To make streaming inference possible, we break the CRP’s conditional distribution’s
p(zt |z<t ,α) dependence on the entire history z<t by replacing it with a marginal distribution p(zt |α). The running sum of
the previous marginal distributions ∑t ′<t p(zt ′ = k) (left) and the Chinese restaurant table distribution p(Kt−1 = k) (middle)
together determine the next marginal distribution p(zt = k) (right). Note the logarithmic scaling. Here, α = 30.91.

3 RECURSION FOR ONLINE
FILTERING

3.1 OBJECTIVE

Our goal is to infer a posterior over the discrete latent state
p(zt |o≤t), subject to two constraints:

1. Inference must be performed online, meaning the filter
cannot make use of the (possibly) infinite past nor can
the filter be used to revise the past.

2. Inference must be efficient in the large t limit

Our biologist seeking to cluster birds into species shows
why both constraints are important. She can’t capture or
carry every bird she observes, nor can she remember or
revise every latent posterior over each bird’s most likely
species, but she must nonetheless be able to form a well-
founded belief as to the most recently seen bird’s species for
as long as her research continues. This problem, of inferring
a posterior over the current latent variable given past and
current observations, is often referred to as filtering (e.g.,
Kalman filter, particle filter).

3.2 BAYESIAN RECURSION

We derive a streaming inference algorithm, R-CRP, which re-
cursively computes the desired posterior on the most recent
latent variables zt . The CRP’s conditional distribution com-
plicates inference because one latent depends on all preced-
ing latents; our approach is to break that dependence by con-
verting the CRP’s conditional distribution into a marginal
distribution, which can be expressed as a running sum of
previously computed quantities. For brevity, we refer to the
prior on the current latent variable p(zt |o<t) as the “latent
prior" and the posterior on the current variable p(zt |o≤t) as

the “latent posterior". Bayes’ rule relates the latent prior to
the latent posterior:

p(zt = k|o≤t)︸ ︷︷ ︸
Latent Posterior

=
p(ot |zt = k)
p(ot |o<t)

p(zt = k|o<t)︸ ︷︷ ︸
Latent Prior

. (5)

The latent prior p(zt = k|o<t) can be rewritten as the expec-
tation of an indicator random variable that we can expand
using the Law of Total expectation.

p(zt = k|o<t)︸ ︷︷ ︸
Latent Prior

= Ep(zt |o<t )[1(zt = k)]

= Ep(z<t ,Kt−1|o<t )

[
Ep(zt |z<t ,Kt−1,o<t )[1(zt = k)]

]
= Ep(z<t ,Kt−1|o<t )

[
p(zt = k|z<t ,Kt−1,o<t)

]
where Kt denotes the random number of non-empty tables
after the t-th customer has been seated. The distribution in-
side the expectation is the conditional distribution specified
by the CRP. Substituting Eqn. (3) and taking the expectation
yields

p(zt = k|o<t) =
1

α + t−1 ∑
t ′<t

p(zt ′ = k ≤ Kt−1|o<t)

+
α

α + t−1
p(Kt−1 = k−1|o<t)

=
1

α + t−1 ∑
t ′<t

p(zt ′ = k|o<t)

+
α

α + t−1
p(Kt−1 = k−1|o<t)

where the second equality is possible because k ≤ Kt−1 is
unnecessary; a previous customer cannot be assigned to a
table that does not later exist. Specifically:

p(zt ′ = k|o<t)= p(zt ′ = k≤Kt−1|o<t)+ p(zt ′ = k > Kt−1|o<t)︸ ︷︷ ︸
=0



For a pure CRP, this recursion is exact. However, in the on-
line setting, we must introduce one approximation: previous
posteriors (on zt ′<t ) cannot be retroactively revised based on
data that arrives later ot>t ′ , since this would require require
remembering all previous latents. With this approximation,
we reach our final recursion for the latent prior:

p(zt = k|o<t)︸ ︷︷ ︸
Latent Prior

≈ 1
α + t−1 ∑

t ′<t
p(zt ′ = k|o≤t ′)

+
α

α + t−1
p(Kt−1 = k−1|o<t)

(6)

Intuitively, Eqn. (6) says that the prior probability that the
t-th latent variable belongs to the kth cluster is the sum of
all preceding latents’ posteriors’ masses of belonging to the
kth cluster, plus a new term. The new term depends on Kt−1,
the number of non-empty tables, and the concentration pa-
rameter α ; it pushes the current latent toward a new cluster.
Fig. 1 visually displays how the accumulating mass of from
previous customers and the pressure to create a new cluster
compete to determine where the new customer will sit.

Substituting Eqn. (6) into Eqn. (5), our recursion is:

p(zt = k|o≤t)︸ ︷︷ ︸
Latent Posterior

≈ p(ot |zt = k)
p(ot |o<t)

[
1

α + t−1 ∑
t ′<t

p(zt ′ = k|o≤t ′)︸ ︷︷ ︸
Previous Posteriors

+
α

α + t−1
p(Kt−1 = k−1|o<t)

]
(7)

The sum over posteriors p(zt ′ = k|o≤t ′) can be computed
by a simple iteration, Rt(k) = Rt−1(k)+ p(zt = k|o≤t). The
recursive application of Eqn. (7) permits online inference of
the latent states in that we can compute the posterior without
re-accessing (and thus without storing) past observations.

We can also recursively compute the posterior distribution
over the number of non-empty tables (which does not have
a closed-form analytical expression):

p(Kt |o≤t) = ∑
Kt−1,zt

p(Kt ,Kt−1,zt |o≤t)

= ∑
Kt−1,zt

p(Kt |Kt−1,zt)p(Kt−1|o≤t)p(zt |o≤t)

≈ ∑
Kt−1,zt

p(Kt |Kt−1,zt)p(Kt−1|o≤t−1)p(zt |o≤t)

(8)

where the conditional p(Kt |Kt−1,zt) is a transition-like func-
tion such that Kt−1 is incremented if zt > Kt−1 +1 and kept
constant otherwise:

p(Kt = Kt−1 +1|Kt−1,zt) =

{
1 if Kt−1 < zt

0 otherwise

p(Kt = Kt−1|Kt−1,zt) =

{
1 if Kt−1 ≥ zt ≥ 1
0 otherwise

This recursion requires storing only a running sum of latent
states’ filtered posteriors and a posterior over the number of
tables. It does not require exchangability of the sequence. It
does not collapse probability distributions via sampling (Liu
et al. [2014]) or point estimators (Wang and Dunson [2011],
Gomes et al. [2008]), nor require storing every previous
latent variable’s posterior (Zhang et al. [2014], Lin [2013]).

3.3 COMPLEXITY ANALYSIS

The total time complexity of the R-CRP recursion is de-
termined by the number of latent states Kt , which is upper
bounded by t. The recursion for the posterior over the num-
ber of non-empty tables has worst-case time complexity
O(Kt) per step, and the recursion for the posterior over the
current latent state has worst-case time complexity O(Kt)
per step. The worst-case space complexity is O(Kt). Con-
sequently, the total worst-case complexity is O(t2) time
and O(t) space. However, if we assume that the posterior
behaves asymptotically like the prior in which Kt grows
logarithmically with t, then the average-case complexity is
quasilinear time O(t log t) and logarithmic space O(log t).

4 EXPERIMENTS

4.1 CORRECTNESS FOR CRP PRIOR

According to the derivation, the recursion should hold ex-
actly for the CRP prior in the absence of observations. We
test that the recursion correctly computes the marginal distri-
butions by comparing the recursion’s analytical expression
to 5000 Monte Carlo samples, each of 50 customers, drawn
from CRP(α) for α ∈ {1.1,10.78,15.37,30.91}. First, we
visually compared the analytical expressions versus the
Monte Carlo estimates (one example α = 10.78 shown in
Fig 2) and found excellent agreement.

Second, we computed the mean squared error between the

Figure 2: Comparison of CRP(α = 10.78) marginal proba-
bilities p(zt |α) for Monte Carlo estimates (left) and R-CRP
analytical expression (right). Note the logarithmic scaling.



analytical R-CRP expression and Monte Carlo estimation
as a function of the number of Monte Carlo samples. For
all four α values, the squared error falls approximately as a
power law with the number of samples (Fig 3), attesting to
the accuracy of R-CRP.

Figure 3: The mean-squared error between the recursively
computed marginal distributions p(zt = k) (R-CRP) and
Monte Carlo estimates falls as an approximate power law
with the number of Monte Carlo samples.

Third, we tested the recursion by how well it matched
the expected table occupancies. The expected number of
customers at the kth table after t customers have been
seated can be written as the sum of the customer seat-
ing marginal probabilities by linearity of expectation:
E[NT,k] = E[∑T

t=11(zt = k)] = ∑
T
t=1 p(zt = k). For α ∈

{1.1,10.01,15.51,30.03}, we found excellent matches for
all values of α (Fig 4).

Figure 4: Monte Carlo estimates of table sizes for the CRP
prior (black) closely match analytical expressions of table
sizes (colored) for varying α values.

4.2 GAUSSIAN MIXTURE MODEL

We returned to performing inference and tested R-CRP on
the synthetic mixture of Gaussians from Kulis and Jordan
[2012]: Data are generated by drawing a sequence of clus-
ter assignments z1, ...,zT ∼ CRP(α), and then drawing a
sequence of observations from the corresponding Gaussian:
xt |zt ,{µk}3

k=1 ∼ N(µzt ,Σzt ). The cluster means are drawn
as µk ∼ N(0,ρI) and the clusters have identical isotropic
covariances Σk = I, (Fig. 5d). We consider two families of
baseline algorithms: offline and online. Offline baselines
have access to the entire dataset and can make multiple
passes through it; we considered three such baselines:

1. Variational Bayes from Blei and Jordan [2006], imple-
mented in Scikit-Learn (Pedregosa et al. [2011]).

2. Hamiltonian-Gibbs Monte-Carlo Sampling, imple-
mented in Pyro (Bingham et al. [2019]).

3. DP-Means, a low-variance asymptotic approximation
from Kulis and Jordan [2012]. We call this DP-Means
(offline).

The online baselines are constrained identically to our R-
CRP, in that inference must be performed online. We con-
sidered three online baselines:

1. DP-Means, but limited to a single forward pass through
the data, identical to how K-Means is performed in the
streaming setting. We call this DP-Means (online).

2. Sequential Updating and Greedy Search (SUGS) from
Wang and Dunson [2011], which uses a "local MAP
approximation" i.e. ẑt = argmaxk p(zt = k|ẑ<t ,α).

3. Online CRP from Liu et al. [2014], which uses sam-
pling i.e. ẑt ∼ p(zt = k|ẑ<t ,α).

R-CRP performs online inference and parameter estima-
tion by first inferring a latent posterior over which cluster
the current observation belongs to i.e. p(zt |o≤t), and then
updates each cluster’s parameters modulated by the pos-
terior probability the observation belongs to that cluster.
Table 1 provides pseudocode. As stated in the pseudocode,
we entertain the notion that each observation could add a
new cluster, which is a maximally conservative step. Others
have explored fixed thresholds for creating new clusters (e.g.
Lin [2013]), but we intentionally exclude such heuristics to
maintain focus on our proposed recursion. Empirically, the
probability mass placed on new clusters after the first few
clusters have been established becomes vanishingly small,
which suggests to us that thresholds are probably fine.

Despite being a filtering inference algorithm, R-CRP recov-
ers highly plausible cluster centroids and makes accurate
cluster predictions (Fig 5a). We also visualize the time evo-
lution of cluster assignment priors, p(zt |o<t) and cluster
assignment posteriors p(zt |o≤t) (Fig 5b). The number of



(a) (b) (c)

Figure 5: (a) One random sample from a mixture of 3 Gaussians (left). Centroids learned by R-CRP (center). Predicted class
labels by R-CRP (up to an arbitrary aliasing) (right). (b) Evolution of cluster assignment priors p(zt |o<t) (left) and cluster
assignment posteriors p(zt |o≤t) (right) as more data are observed from the Mixture of Gaussians. (c) R-CRP is slower than
most online baselines but signficantly faster than offline baselines.

non-empty tables rapidly increases, but after several ob-
servations, the model learns that some previously created
clusters (i.e., clusters 4, 5, 6) were likely not genuine clus-
ters and starts allocating more mass to earlier clusters. Al-
though past mistakes are not corrected, their proportional
influence decreases as more data arrives. Importantly, when
we sweep the range of possible concentration parameters
(λ for DP-Means, α for the rest), we find that over a wide
range, R-CRP finds a more reasonable number of clusters
(Fig. 6a) and has higher adjusted mutual information (Vinh

1. Initialize p(K0 = 0) = 1, and ∀k ∈ Z, set running
sum of posteriors R0(k) = 0

2. For each t = 1, ...,T :

• Create new cluster mean µ
(t)
k=t = ot

• Compute prior for new observation:

p(zt = k|o<t)≈
1

α + t−1
Rt−1(k)

+
α

α + t−1
p(Kt−1 = k−1|o<t)

• Compute posterior for new observation:

p(zt = k|o≤t) ∝ N(ot ; µk,Σ)p(zt = k|o<t)

• Update running sum of posteriors:

Rt(k) = Rt−1(k)+ p(zt = k|o≤t)

• Update existing cluster means:

µ
(t)
k ← µ

(t−1)
k +

p(zt = k|o≤t)

Rt(k)
(ot −µ

(t−1)
k )

• Compute new posterior p(Kt |o≤t) on number
of tables using Eqn. (8)

Table 1: Pseudo-code for performing inference with R-
CRP(α) in a Gaussian Mixture Model.

et al. [2010]) between its predictions and the true class la-
bels than the baselines (Fig 6b). R-CRP offers both high
performance while being significantly faster than most of-
fline baselines (Fig 5c). Despite the model’s capacity to use
as many clusters as observations, the likelihoods constraint
the model to a reasonable number of clusters.

Figure 6

(a) For a wide range of concentration parameters, R-CRP learns
within an order of magnitude the correct number of clusters.

(b) R-CRP displays high adjusted mutual information (Vinh et al.
[2010]) with the correct class labels, comparable to offline base-
lines and better than online baselinesa.

aSUGS is not incorrectly implemented; its pathological perfor-
mance has been noted before e.g. in Lin [2013]



(a) (b) (c)

Figure 7: Omniglot (Lake et al. [2015]) Handwritten Character Recognition. (a) R-CRP displays higher adjusted mutual
information than other online baselines. (b) For a wide range of concentration parameters, R-CRP learns within an order of
magnitude the correct number of clusters. (c) R-CRP recovers plausible clusters of Omniglot characters.

4.3 HANDWRITTEN CHARACTER
RECOGNITION

Moving beyond simulated data, we turned to the problem of
clustering handwritten characters. Humans are adept at de-
termining which character a never-before-seen set of strokes
represents, or whether the set of strokes represents a new
character altogether. We used the Omniglot dataset (Lake
et al. [2015]), which consists of 1623 different handwritten
characters from 50 different alphabets, each drawn 20 times
by different humans. An Omniglot datum is a greyscale
105 pixel by 105 pixel image. To be able to model the im-
ages with a Gaussian likelihood, we trained a variational
autoencoder (Rezende et al. [2014], Kingma and Welling
[2014]) using an open source VAE library1 and took the
Gaussian means at the bottleneck as representations of each
image. We then tested how well R-CRP clusters this dataset
compared against the previous Gaussian-likelihood online
baselines (SUGS, Online CRP, DP-Means (online)).

We found R-CRP outperforms all online baselines per ad-
justed mutual information for all concentration parameters
(except SUGS at α = 0.01) (Fig 7a), and recovers within an
order of magnitude the correct number of clusters for all con-
centration parameters (Fig 7b). R-CRP recovers plausible
clusters of handwritten characters (Fig 7c), which admit-
tedly aren’t excellent, but are significantly better than the
clusters produced by other baselines.

4.4 CATEGORICAL MIXTURE MODEL

To show that R-CRP works for non-Gaussian likelihoods,
we next studied the performance of R-CRP on a Categorical
mixture model, sometimes called a mixture-of-unigrams
(Nigam et al. [2000]). A mixture-of-unigrams can be used
to describe a corpus of documents, in which each document
belongs to exactly one of a discrete number of topics. For

1https://github.com/jmtomczak/vae_
vampprior

instance, each Wikipedia page might concern history, sci-
ence, pop culture or something else; as users create new
Wikipedia pages, we would like to cluster these pages into
the appropriate topics without needing to refit to the entire
Wikipedia corpus.

Data are generated by drawing a sequence of cluster assign-
ments z1, ...,zT , and then by drawing a probability vector
pk ∼ Dir(β1) ∈ ∆V−1 where V is the vocabulary size and
∆V−1 is the V −1 simplex. Each observation conditioned on
the cluster assignment follows a Multinomial distribution
ot ∼Multinomial(M, pzt ) where M is the document length;
each document can be thought of as word counts for each
word in the vocabulary.

To perform inference and parameter estimation, R-CRP
uses a Dirichlet-Multinomial likelihood. Specifically, each
cluster has a pseudocounts parameter nk ∈ RV

+ that parame-
terizes a Dirichlet distribution over the cluster’s probability
vector p̂k ∼ Dir(nk). The likelihood is then:

p(ot |zt = k;n(t−1)
k ) =

∫
∆V−1

p(ot |p̂k)p(p̂k|n
(t−1)
k )d p̂k

p(ot |zt = k;n(t−1)
k ) =

∫
∆V−1

Wt

∏
w=1

p(ot,w|p̂k)p(p̂k|n
(t−1)
k )d p̂k

To update each cluster’s pseudocounts, we increment the
pseudocounts by the newest observation weighed by the
posterior probability the observation belongs to the cluster:

n(t)k ← n(t−1)
k + p(zt = k|o≤t)ot

Pseudocode is provided in Table 2. We again compare R-
CRP against offline and online baselines, with two changes:
(1) we drop DP-Means because the algorithm is defined
for a Gaussian likelihood, (2) we replace Variational Bayes
(VB) with Stochastic Variational Inference (SVI; Hoffman
et al. [2013]) because Scikit-Learn does not have an imple-
mentation of VB and Pyro offers better support for SVI.

https://github.com/jmtomczak/vae_vampprior
https://github.com/jmtomczak/vae_vampprior


(a) (b) (c)

Figure 8: For a wide range of concentration parameters, R-CRP (a) recovers close to the correct number of topics and (b)
has outstanding adjusted mutual information with the true topic labels. (c) R-CRP is slightly slower than online baselines
but significantly faster than offline baselines.

We find that over a wide range of concentration parameters,
R-CRP recovers close to the correct number of topics (8a).
We also find that R-CRP has higher or comparable adjusted
mutual information (Vinh et al. [2010]) over a wide range
of concentration parameters than many of the baselines,
including HMC-Gibbs and SVI 2.

5 DISCUSSION

In this paper, we presented an efficient streaming inference
algorithm, the Recursive Chinese Restaurant Process (R-
CRP), for nonparametric mixture models. The time and
space complexities are controlled by the number of unique
values the discrete latent variables can take, which is a prop-
erty of the task; assuming the posterior behaves asymp-
totically like the prior, R-CRP has quasilinear expected
time complexity O(t log t) and logarithhmic expected space
complexity O(log(t)). In addition to functioning online and
being efficient in the large t limit, R-CRP maintains full
posteriors over the latent variables without relying on ex-
changeability of the latent variables. Experimentally, we
showed that if the latent variables are directly observable,
R-CRP exactly describes the marginal distribution of the
most recent variable p(zt |α). We then showed that when the
latent variables are indeed latent, under one approximation,
R-CRP can recover the latent structure as well as or better
than commonly used inference algorithms that require si-
multaneous access to the entire dataset and make multiple
passes through the dataset.

Future Directions: This paper lays the groundwork for a
variety of extensions in different directions. One possible
direction is encouraging others to pursue practical approxi-
mate inference algorithms to make Bayesian nonparamet-
rics, a powerful tool, more usable in practice. Another pos-

2Their poor performance suggests an implementation error,
but the Pyro developers told us that inferring a large number of
discrete latent variables with both algorithms performs poorly this
Pyro post and this Pyro post.

sible direction is studying criteria for when to create new
clusters or merge existing clusters.
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wrote the paper. BB worked on the mixture of unigrams

1. Initialize p(K0 = 0) = 1, and ∀k ∈ Z, set running
sum of posteriors R0(k) = 0

2. For each t = 1, ...,T :

• Create new cluster pseudocounts n(t)k=t = ot + ε ,
where ε is a small fixed positive quantity

• Compute prior for new observation:

p(zt = k|o<t)≈
1

α + t−1
Rt−1(k)

+
α

α + t−1
p(Kt−1 = k−1|o<t)

• Compute posterior for new observation:

p(zt = k|o≤t) ∝ Multi(ot ; pk)p(zt = k|o<t)

• Update running sum of posteriors:

Rt(k) = Rt−1(k)+ p(zt = k|o≤t)

• Update existing cluster pseudocounts:

n(t)k ← n(t−1)
k + p(zt = k|o≤t)ot

• Compute new posterior p(Kt |o≤t) on number
of tables using Eqn. (8)

Table 2: Pseudo-code for performing inference with R-
CRP(α) in a Categorical Mixture Model.
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