Reverse-engineering recurrent neural network solutions to a hierarchical inference task for mice

Rylan Schaeffer NeurIPS 2020 Goal: reverse engineer how recurrent neural networks perform hierarchical inference

Questions

- 1. How well do RNNs compare against normative Bayesian baselines?
- 2. What are the representations, dynamics and mechanisms RNNs employ to perform inference?

BRA

LABORATORY

Hierarchical Inference Task

RNN Behavior Quantitatively Matches Bayesian Baseline

RNN State Space Displays Two Kinds of Dynamical Behavior

6

Novel Distillation Technique Preserves Phase Portrait

Novel Distillation Reveals RNN Circuit

$$\hat{z}_{n,t} = \begin{bmatrix} \mathsf{Stimulus Belief}_{n,t} \\ \mathsf{Block Belief}_{n,t} \end{bmatrix}$$

$$\hat{z}_{n,t} = \tanh\left(\begin{bmatrix}0.54 & 0.31\\0.19 & 0.84\end{bmatrix}\hat{z}_{n,t-1} + \begin{bmatrix}-0.20 & 0.20 & 0.005\\-0.04 & 0.04 & 0.021\end{bmatrix}\begin{bmatrix}o_{n,t}^{L}\\o_{n,t}^{R}\\r_{n,t}\end{bmatrix}\right)$$

Acknowledgements

Rylan Schaeffer Mikail Khona Leenoy Meshulam Ila Fiete & IBL Theory Working Group

brain+cognitive sciences

McGOVERN INSTITUTE FOR BRAIN RESEARCH AT MIT

INTERNATIONAL BRAIN LABORATORY

