
Towards Unifying Smooth Neural Codes with
Adversarially Robust Representations

Rylan Schaeffer
Institute for Applied Computational Science

Harvard University
Cambridge, MA 02138

rylanschaeffer@g.harvard.edu

Helena Casademunt
Department of Physics

Harvard University
Cambridge, MA 02138

hcasademunt@g.harvard.edu

Nayantara Mudur
Department of Physics

Harvard University
Cambridge, MA 02138

nmudur@g.harvard.edu

Abstract

Recent work has linked the geometry of neural population codes to their eigen-
spectra [31], yielding a hypothesis that the vulnerability of deep convolutional
neural networks (CNNs) to adversarial attacks might be an emergent consequence
of the networks learning fractal representations. We demonstrate experimentally
on a diverse set of CNNs trained on ImageNet [7] that this hypothesis is false.
We further demonstrate that artificial network codes are largely non-responsive to
input images that deviate from the training data distribution, another key departure
from the theory. Finally, we propose two loss regularization terms, implement
both, and demonstrate that while one regularizes networks trained on CIFAR-10
[20] as expected, the other has no apparent effect. The regularization results raise
questions concerning the relevance of this fractal bound.

1 Introduction

Recent work in computational neuroscience has sought to understand visual sensory processing by
comparing convolutional neural networks (CNNs) to biological circuits at all levels of the visual
hierarchy, from retina [25, 35] to V1/V2/V4 [12] to inferotemporal (IT) cortex [3, 17] to the entire
visual ventral stream [22]. However, as one paper aptly notes, the main contribution of this line
of work is demonstrating that artificial networks can explain a high fraction of variance in their
biological counterparts, suggesting that absent scientific understanding, “we may simply be replacing
one inscrutable blackbox (the brain), with another (a potentially overparameterized deep network)"
[35].

To further an understanding of visual sensory processing, we sought to test a recent prediction
concerning the geometry of neural population codes in artificial neural networks. Specifically, Stringer,
Pachitariu et al. [31] argued that in order for a population of neurons to have a high dimensional
but smooth representation of stimuli, the eigenspectrum of the covariance of the population must
obey a power law such that λn = O(n−α

∗
), where λn is the n-th eigenvalue, α∗ = 1 + 2/d and d is

the dimension of the stimulus. For exponents α above this bound α∗, the neural response becomes
fractal, meaning nearly identical stimuli in stimulus-space can be represented arbitrarily far apart in
neural representation-space and vice versa.

Preprint. Under review.

Figure 1: Adapted from Stringer, Pachitariu
et al. Figure 4 [31]. Stimuli (top row) have
coarse (red) to fine (blue) grained details. En-
coding all details forces the neural code to
become fractal (c, bottom). Conversely, a
smooth representation (e, bottom) may lose
stimulus information (e, middle). The optimal
representation is a code as high dimensional
as possible (d, middle) without trespassing
into fractality (d, bottom).

Stringer, Pachitariu et al. give an example of a one-
dimensional (d = 1) stimulus (e.g. drifting gratings),
with an optimal power law given by α∗ = 1 + 2/d =
3. If the eigenspectrum decays too slowly (α = 2)
(Fig 1, c, middle row), the representation necessar-
ily becomes fractal in order to encode increasingly
fine-grained information, visualized by the tangled
random projection (Fig 1, c, bottom row). If the
eigenspectrum decays too quickly (α = 4) (Fig 1,
e, middle row), the representation remains smooth,
but information that could otherwise be preserved is
not (Fig 1, c, bottom row). In the Goldilocks zone,
the representation encodes as much information as
possible while remaining smooth (Fig 1, c, middle
and bottom row).

The authors hypothesized this bound might explain
why making small but intentional perturbations to
input images can cause deep learning models to pro-
duce incorrect outputs with high confidence, a phe-
nomenon termed adversarial attacks [10, 33]. The
machine learning research community has devoted
attention to defining, explaining and developing de-
fenses against these adversarial examples; for a com-
prehensive review, see [37]. While other works have
contributed to exploring and characterizing the geom-
etry of adversarial examples [1, 23, 4, 9, 18, 5, 6], to
the best of our knowledge, we are the first to test the
hypotheses that emerge from Stringer, Pachitariu et al. [31]. Specifically, we sought to answer the
following questions:

1. What are the eigenspectra of neural activity in CNNs trained on natural images? Per Stringer,
Pachitariu, et al., do the CNN eigenspectra indicate that the learned representations are
fractal?

2. How do eigenspectra of neural activity in CNNs change for input data that differ from the
training data distribution? Specifically, how do (a) noise, (b) reduced dimension image, and
(c) robust and non-robust images [24] affect the eigenspectra?

3. What modifications to loss functions are sufficient to create a Stringer-Pachitariu power-law
decay? Does possessing this decay improve a network’s robustness against adversarial
attacks?

2 Methods

2.1 Datasets

In our experiments, we used two datasets: ImageNet [7] and CIFAR-10 [20]. ImageNet is a large
image database of approximately 14 million natural images with over 20,000 labeled classes. Images
are typically 3 channels by 256 pixels by 256 pixels. CIFAR-10 is a smaller image database of 60000
natural images with 10 labeled classes. Images are each 3 channels by 32 pixels by 32 pixels.

We also test models with four CIFAR10 datasets from Ilyas et al. (2019) [16]. Ilyas et al. argued that
features can be disentangled into robust and non-robust features. A robust feature (or a γ-robustly
useful feature) is a feature that remains correlated (or anti-correlated) above a threshold (γ), with
the true label under a set of adversarial perturbations. A non-robust useful feature is one that is
correlated with the true label but does not remain correlated under a perturbation, for any γ > 0. The
authors further demonstrate that a dataset composed of only robust features possesses high accuracy
on the original training dataset as well as high ‘robust accuracy’– accuracy against adversarial attacks.
Conversely, a dataset composed of only non-robust features exhibited high accuracy on the original
training dataset but poor robust accuracy. The four datasets used here (Sections 3.2.3, 3.3) consist of

2

the two datasets composed of robust and non-robust features respectively, and two datasets consisting
of adversarial examples toward a deterministic and a random class.

2.2 Models

When discussing ImageNet, we used the following CNNs: AlexNet [19], MnasNet [34], VGG [29],
ResNet [13], GoogLeNet [32]. These models achieved state-of-the-art results on the ImageNet Large
Scale Visual Recognition Challenge [28], an annual public image classification competition. We used
weights made publicly available through PyTorch. When discussing CIFAR-10, we trained a model
ourselves adapted from the PyTorch CIFAR-10 tutorial. Unless otherwise stated, the model was
trained using the cross entropy loss function. The model architecture is specified in Supplementary
Methods.

In Section 3.3, we used the class of CIFAR-10 adversarially trained ResNet50 models from the
Robustness library (Engstrom et al [8]). The models were trained by augmenting the input dataset
about an ε sphere in l2-space about the training input and minimizing an ‘adversarial’ loss function
which constrains the output to remain invariant over the set of perturbations lying inside this sphere.
There are four models in this class, each labelled by the value of ε used in the training them: 0
(standard training), 0.25, 0.5 and, 1. These models are henceforth referred to as the Robustness
models.

2.3 Analysis

Based on findings that layers within CNNs correlate most with stages in visual ventral stream that
have roughly the same depth in the processing hierarchy [3, 17, 38], we used the penultimate layer
of each network to compare against mouse V1 neurons. We made this choice for simplicity as
architectures differ significantly and identifying the layer most similar to V1 in each would be a
project by itself. Future work could certainly apply the analyses employed here on the penultimate
layer to different layers or multiple layers.

To calculate slopes of eigenspectra, we regressed the log of the eigenvalue index number against
the log of the eigenvalue itself. We frequently observed steep drop-offs in the eigenspectra beyond
102.5, which we explained as the covariance matrices not being full rank as most models’ penultimate
layers had 103 neurons. Consequently, we calculated slopes of eigenspectra using the 10th through
316th eigenvalues, except for the eigenspectra corresponding to the outputs of Imagenet, where we
calculated them using the 10th through 100th.

3 Results

3.1 CNNs Trained on ImageNet Decay Faster Than Fractal Bound

Figure 2: Eigenspectra of CNNs trained on Im-
ageNet [7]. All CNNs have exponents below
α∗ ≈ 1, indicating that no model learned fractal
representations.

To answer the first question of whether the eigen-
spectra of neural activity in CNNs trained on
natural images decay too slowly, placing them
in the fractal representation regime, we first in-
stantiated eleven state-of-the-art CNNs trained
on natural images from the ImageNet dataset
[7]. We then fed 3000 random ImageNet images
into each model, extracted the activity vectors
in the penultimate layer, constructed the neuron-
neuron covariance matrix by averaging over the
data and computed the eigenspectrum of the co-
variance matrix. The eigenspectra of all models
is shown in Fig. 3.2.2. While the slopes vary for
different architectures, they are all lower than
the Stringer-Pachitariu bound, placing them in
the non-fractal regime. Since all of these mod-
els are known to be vulnerable to adversarial
attacks, this suggests that said vulnerability can-

3

not be explained by Stringer, Pachitariu at al.’s hypothesis that these networks have fractal neural
codes.

3.2 Eigenspectra Are Invariant To Inputs Outside the Training Distribution

As we saw in Section 3.1, the eigenspectra of all the measured CNNs exist within the non-fractal
regime when we used a subset of ImageNet as an input. Since the CNNs were trained on ImageNet,
we expect good performance on this dataset, so it is perhaps unsurprising that the representations in
the penultimate layer are smooth. Consequently, we asked what happens to the eigenspectra when
the test data distribution differs from the training data distribution. In this subsection we examine
the behaviour of the eigenspectra under three such variations: additive Gaussian noise, reduced
dimension versions of the training dataset, and robust and non-robust versions of the training dataset.

3.2.1 Images with Additive Gaussian Noise

We added independent and identically distributed Gaussian noise of standard deviation δ (assuming
images are normalized between 0 and 1) to each color component of each pixel. We tested the
response of a network of each family and observed similar trends for all of them, so we only show
the results for ResNet50 in Fig. 3 (left panel). The plots show that perturbing the data for the
ImageNet pretrained models changes the eigenspectrum shape and slope. The characteristic shape
of the ResNet50 penultimate layer activity becomes less pronounced as we add noise, since some
features of the dataset disappear. The slope increases as we add more noise, and is highest for the pure
noise input. For CIFAR-10, we observed a similar behavior as for ImageNet, but the changes were
less pronounced. This might be due to the simplicity of the CIFAR-10 dataset. Another difference
is that the inputs of pure noise had different y-intercept but very similar slope to the eigenspectra
based on the dataset images with the same δ. Surprisingly, inputting only Gaussian noise produced
essentially the same eigenspectra as inputting a noisy image.

Therefore, we find that if we look at the penultimate layer eigenspectra after a perturbed input, the
eigenspectra do not get closer to fractal representations, but farther. This supports the conclusion
from section 3.1 that models that are vulnerable to adversarial attacks have fractal representations of
the space of features of the dataset.

Figure 3: Eigenspectra of CNNs trained on ImageNet [7] (left) and CIFAR-10 [20] (right), with an
input of additive Gaussian noise on the respective training dataset or pure Gaussian noise, where δ is
the standard deviation of the noise.

3.2.2 Images of Reduced Dimension

One key aspect of Stringer, Pachitariu et al.’s experimental observations and theoretical results is
that the neural code should change depending on the dimension of the input stimulus (Fig 3.2.2,
Left). To test whether CNNs are similarly responsive, we constructed 7 modified versions of CIFAR-
10: one whitened using zero-phase component analysis (ZCA) [2], and six projected onto the first

4

1, 2, 4, 8, 16, 32 principal component vectors. We trained a model on the original CIFAR-10 images
and subsequently fed each of the seven modified versions of CIFAR-10 to the model, extracting the
activity vectors and computing the eigenspectra. We observed a key difference between biological
vision and artificial vision: while biological neurons change their behavior to obey the power law
λn = O(n−α

∗
), where α∗ = 1 + 2/d, our artificial neurons were largely non-responsive to stimuli

dimension (Fig 3.2.2, Right). On unmodified CIFAR-10, the model has a similar slope (α = 1.03) to
mouse V1 recordings (α = 1.04). However, as the dimension of the input data decreased to 8, 4, 1,
mouse V1 recordings declined to α = 1.49, 1.65, 3.51 respectively whereas the model declined to
α = 1.21, 1.20, 1.20. When presented with ZCA whitened CIFAR-10, the model changed most
significantly (α = 1.51), despite the fact that ZCA whitening decorrelates input dimensions but
does not remove them. This again disagrees with mouse V1 data that displayed minimal changes
(α = 1.06) to whitened data.

Figure 4: Left: Fig 3 from [31], showing that the slope of the neural code eigenspectrum depends
on the dimension of the input stimuli d, obeying a λn = O(n−1−2/d) power law. Right: Our
experiments show that while a model trained on CIFAR-10 has a similar power law to mouse V1
recordings, the model is largely non-responsive to the dimension of the input stimuli.

We note that these results may not hold for other architectures trained on other datasets (e.g. Ima-
geNet), especially since ResNet-50 was significantly more responsive to Gaussian input noise than
our CIFAR-10 model.

3.2.3 Datasets Composed of “Robust” and “Non-Robust” Features

Figure 5: Penultimate layer eigenspec-
tra of datasets consisting of adversarial
examples and composed of robust and
non-robust features for our CIFAR-10
model.

We examined the eigenspectra of two datasets composed
of robust and non-robust features and of datasets consisting
of adversarial examples (see Methods). With our CIFAR-
10 model, all slopes, including the non-robust dataset obey
power law decays with a slope larger than 1. This is
important since it indicates that inputs consisting of non-
robust features may still pass the ‘smoothness’ criterion
that allows their output eigenspectra to decay faster than
1. Interestingly, the eigenspectra for all four datasets were
identical to each other for the CIFAR-10 model, indicating
that penultimate layer eigenspectra are indifferent to the
feature space that the test datasets lie in. This observation
may be model / architecture specific and may not be true
with other models, as we see below.

5

3.3 Different Models obey Significantly Different Power Laws

We performed the above experiments with adversarially trained models from the Robustness library
[8]. The values of the principal eigenvalues of the eigenspectra are seven orders of magnitude
less than those obtained with the CIFAR-10 model, and within one order of magnitude of those
obtained with the ResNet50 eigenspectra for the ImageNet dataset (see Figure 3), indicating that the
architecture used determines the magnitude of the eigenvalues more than variations in the test dataset.
The Robustness models’ penultimate layer eigenspectra for all test datasets decay significantly faster
than in our CIFAR-10 model, with the slopes lying in the vicinity of 4. The steep decay in the slope
is also present in the ε = 0 model, that corresponds to the standard training case. This indicates
that the difference in slopes does not arise solely from the training dataset augmentation performed
while training the adversarial models, but also, in part from the difference in architectures. The
behaviour of these models is consistent with the behaviour of our CIFAR-10 model, with regard to the
overall invariance in the slopes obtained with different choices of the test dataset. Interestingly, unlike
in the case of the CIFAR-10 model, the Robustness models exhibit slightly different eigenspectra
decays with the four Ilyas et al datasets, and it appears that this class of models is less indifferent
to the features that the datasets are composed of. This is perhaps unsurprising since Ilyas et al use
adversarially trained models to disentangle datasets into robust and non-robust features in the first
place. The behaviour exhibited by the robust dataset also differs between the four models. This
observation indicates that adversarial robustness affects the representation of robust features as well.

Figure 6: Left: Penultimate layer eigenspectra of a single Robustness model (ε = 1) with four dataset
variants. Right: Eigenspectra of the robust-features dataset with all four Robustness models.

3.4 Regularized Loss Functions Affect Eigenspectra

Our final direction was to explore whether regularization of the loss function could create a Stringer-
Pachitariu power-law decay, and whether this representation improves resilience to adversarial
examples. Let x ∈ R3×32×32 be the input CIFAR-10 image, y ∈ R10 be the correct CIFAR-10 class,
f(x) ∈ R10 be the predicted CIFAR-10 class where f(·) is the CNN, hl(x) ∈ R1000 be the activity
of the penultimate layer, and c1, c2 be two scalar coefficients. We consider a modified loss function
of the following form:

L(x, y) = −
10∑
i=1

yi log fi(x) + c1|| offdiag hl(x)hl(x)T ||F + c2||∇xf(x)||F (1)

where || · ||F is the Frobenius norm. Each term expresses a desired property the neural code. The
first is the supervised loss (cross entropy), incentivizing the neural code to encode task-necessary
information. The second term penalizes covariance between neurons, pressuring the neural code to
have a high-dimensional representation, while the third term penalizes the roughness of the neural
representation, pressuring the neural code to be smooth. We call the first covariance penalization and
the second Jacobian penalization. Prior work has considered each term (e.g. Jacobian [11, 30, 14, 15],

6

off-diagonal covariance [27]), although to the best of our knowledge, we are the first to consider both
in the context of adversarial attacks. Here, we consider one of the most common attacks: Projected
Gradient Descent (PGD) [21, 24], an iterative version of the Fast Gradient Sign Method (FGSM) [10].
FGSM takes an input x and creates an ε-adversarial attack xadvε :

xadv ← x+ ε sign(∇xL(x, y))

PGD is the same algorithm repeated T times, where T is a scalar hyperparameter.

xadvT ← x+

T−1∑
t=0

ε sign(∇xadv
t
L(xε advt , y))

We asked what effect c1, c2 have on the eigenspectra, and second, what effect c1, c2 have on classi-
fication accuracy against adversarial attacks. For covariance penalization c1 ∈ {0, 0.01, 0.05, 0.1}
and Jacobian penalization c2 ∈ {0, 0.5, 1, 3}, we trained the same CIFAR-10 model to 92% accuracy.
We then generated 3000 adversarial images using PGD with the following parameters and measured
each model’s classification accuracy. We expected that higher values of covariance penalization c1
would increase α, which we experimentally confirmed (Fig 7, left). Across all models, penalizing
off-diagonal covariance decreased α, pushing the representations into the fractal regime; we also
observed that the y-axis shifted down.

Figure 7: Models trained under Eq. (1). Left: α, the eigenspectrum decay exponent. Covariance
penalization decreases α, indicating fractal representations. Right: classification accuracy against
3000 adversarial attacks generated using PGD. Jacobian penalization appears to have no relationship
with accuracy.

Figure 8: Classification accuracy
on 3000 adversarial images versus
eigenspectra exponent α. Points to
the left of the red line α∗ ≈ 1 indi-
cate fractal neural codes.

We also expected that higher values of Jacobian penalization
would increase classification accuracy against adversarial at-
tacks. Surprisingly, the model with the highest accuracy against
adversarial attacks had no Jacobian penalization and covariance
penalization of 0.01 (Fig 7, right). We could see no relation-
ships between Jacobian penalization and classification accuracy,
noting that fractal representations have both higher and lower
adversarial accuracy than non-fractal representations (Fig 3.4).
This further supports the notion that adversarial vulnerability is
not an emergent consequence of a fractal representation. How-
ever, we are not confident in this result because of a critical
implementation detail: due to how automatic differentiation
frameworks work, we were forced to penalize the norm of
the column sums of the Jacobian rather than the norm of the
Jacobian. This is because automatic differentiation naturally
computes either Jacobian-vector and vector-Jacobian products,
meaning computing the Jacobian once scales linearly with the output dimension, a cost-prohibitive
operation for networks with 1000-dimensional penultimate layers.

7

4 Conclusion

We measured the covariance eigenspectra of the penultimate layer activations of CNNs under different
inputs. In the overwhelming majority of cases, the eigenspectra decayed faster than α∗, indicating
these networks learned non-fractal representations. Since these networks are known to be vulnerable
to adversarial attacks, this demonstrates that a slope of α < α∗ is not a sufficient condition to
make networks robust. This conclusion is further supported by our results comparing α against
classification accuracy on adversarial examples, that show that even fractal α values can be more
robust than non-fractal α values. Due to the network architectures and activation functions, we expect
the penultimate layer representation to be piecewise differentiable. Based on Theorem 5 of Stringer,
Pachitariu et al., we expect the non-fractal bound α∗ to be trivially satisfied for all CNNs, so we need
additional criteria to guarantee robustness in the face of adversarial attacks.

Our experiments also show that the penultimate layer covariance eigenspectrum of CNNs depends
much more on the architecture, the training dataset, and the loss function than on the input data. We
observed little change in the eigenspectra in response to varying inputs. Additive Gaussian noise,
changes in dimensionality, whitening, and feature separation barely affected the slope α, especially
for networks trained on CIFAR-10. This is inconsistent with the results derived from mouse V1
recordings by Stringer et al. [31], since they observed that varying the dimension d of the input data
changed the output to follow a slope of α = 1 + 2/d. Therefore, we see that CNNs, in contrast to
mouse neurons, are not dynamically changing their behavior contingent on the input.

Finally, our results show that penalizing the norm of the end-to-end Jacobian has little effect on
the decay exponent α or on classification accuracy on adversarial images. Most perplexingly, we
expected that all decay exponents would satisfy α < α∗, but we empirically saw that penalizing the
off-diagonal covariance components consistently drives the network’s representation to the fractal
region, even when the robustness to adversarial attacks is reasonably high. This suggests that
the expected derivative magnitude of the network is not finite, a puzzling finding as we believed
that this condition would typically be met for the architectures under consideration. Further work
will be required to discover regularization that incentivizes smooth representations. One possible
direction is to investigate the effects of a finite size covariance matrix on the asymptotic decays of the
eigenspectrum.

Another interesting question to probe is the manner in which networks perceive or differentiate
between robust and non-robust features. This is motivated by our observations that the Robustness
models possess different eigenspectra for datasets composed of robust and non-robust features. Future
work should additionally explore stricter conditions on the penultimate layer representation that affect
the vulnerability to adversarial attacks.

5 Acknowledgments

We thank Professor Cengiz Pehlevan for his guidance and feedback on this project, and for leading
such an enjoyable course this semester. We also thank Blake Bordelon for his helpful comments and
suggestions.

8

6 References
[1] Laurent Amsaleg et al. “The vulnerability of learning to adversarial perturbation increases

with intrinsic dimensionality”. In: 2017 IEEE Workshop on Information Forensics and Security
(WIFS). IEEE. 2017, pp. 1–6.

[2] Anthony J Bell and Terrence J Sejnowski. “The “independent components” of natural scenes
are edge filters”. In: Vision research 37.23 (1997), pp. 3327–3338.

[3] Charles F Cadieu et al. “Deep neural networks rival the representation of primate IT cortex for
core visual object recognition”. In: PLoS computational biology 10.12 (2014), e1003963.

[4] Zachary Charles, Harrison Rosenberg, and Dimitris Papailiopoulos. “A geometric perspective
on the transferability of adversarial directions”. In: arXiv preprint arXiv:1811.03531 (2018).

[5] Yubei Chen, Dylan Paiton, and Bruno Olshausen. “The sparse manifold transform”. In: Ad-
vances in Neural Information Processing Systems. 2018, pp. 10513–10524.

[6] SueYeon Chung, Daniel D Lee, and Haim Sompolinsky. “Classification and geometry of
general perceptual manifolds”. In: Physical Review X 8.3 (2018), p. 031003.

[7] Jia Deng et al. “Imagenet: A large-scale hierarchical image database”. In: 2009 IEEE confer-
ence on computer vision and pattern recognition. Ieee. 2009, pp. 248–255.

[8] Logan Engstrom et al. Robustness (Python Library). 2019. URL: https://github.com/
MadryLab/robustness.

[9] Alhussein Fawzi et al. “Empirical study of the topology and geometry of deep networks”.
In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2018,
pp. 3762–3770.

[10] Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and Harnessing
Adversarial Examples. 2014. arXiv: 1412.6572 [stat.ML].

[11] Shixiang Gu and Luca Rigazio. Towards Deep Neural Network Architectures Robust to
Adversarial Examples. 2014. arXiv: 1412.5068 [cs.LG].

[12] Umut Güçlü and Marcel AJ van Gerven. “Deep neural networks reveal a gradient in the
complexity of neural representations across the ventral stream”. In: Journal of Neuroscience
35.27 (2015), pp. 10005–10014.

[13] Kaiming He et al. “Deep residual learning for image recognition”. In: Proceedings of the IEEE
conference on computer vision and pattern recognition. 2016, pp. 770–778.

[14] Judy Hoffman, Daniel A Roberts, and Sho Yaida. “Robust Learning with Jacobian Regulariza-
tion”. In: arXiv preprint arXiv:1908.02729 (2019).

[15] Alexander G. Ororbia II, C. Lee Giles, and Daniel Kifer. Unifying Adversarial Training
Algorithms with Flexible Deep Data Gradient Regularization. 2016. arXiv: 1601.07213
[cs.LG].

[16] Andrew Ilyas et al. “Adversarial examples are not bugs, they are features”. In: arXiv preprint
arXiv:1905.02175 (2019).

[17] Seyed-Mahdi Khaligh-Razavi and Nikolaus Kriegeskorte. “Deep supervised, but not unsuper-
vised, models may explain IT cortical representation”. In: PLoS computational biology 10.11
(2014), e1003915.

[18] Marc Khoury and Dylan Hadfield-Menell. On the Geometry of Adversarial Examples. 2018.
arXiv: 1811.00525 [cs.LG].

[19] Alex Krizhevsky. One weird trick for parallelizing convolutional neural networks. 2014. arXiv:
1404.5997 [cs.NE].

[20] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
Tech. rep. Citeseer, 2009.

[21] Alexey Kurakin, Ian Goodfellow, and Samy Bengio. Adversarial examples in the physical
world. 2016. arXiv: 1607.02533 [cs.CV].

[22] William Lotter, Gabriel Kreiman, and David Cox. “Deep predictive coding networks for video
prediction and unsupervised learning”. In: arXiv preprint arXiv:1605.08104 (2016).

[23] Xingjun Ma et al. “Characterizing adversarial subspaces using local intrinsic dimensionality”.
In: arXiv preprint arXiv:1801.02613 (2018).

[24] Aleksander Madry et al. “Towards deep learning models resistant to adversarial attacks”. In:
arXiv preprint arXiv:1706.06083 (2017).

9

https://github.com/MadryLab/robustness
https://github.com/MadryLab/robustness
https://arxiv.org/abs/1412.6572
https://arxiv.org/abs/1412.5068
https://arxiv.org/abs/1601.07213
https://arxiv.org/abs/1601.07213
https://arxiv.org/abs/1811.00525
https://arxiv.org/abs/1404.5997
https://arxiv.org/abs/1607.02533

[25] Lane McIntosh et al. “Deep learning models of the retinal response to natural scenes”. In:
Advances in neural information processing systems. 2016, pp. 1369–1377.

[26] Adam Paszke et al. “Automatic Differentiation in PyTorch”. In: NeurIPS Autodiff Workshop.
2017.

[27] Cengiz Pehlevan and Dmitri B. Chklovskii. “Optimization theory of Hebbian/anti-Hebbian net-
works for PCA and whitening”. In: 2015 53rd Annual Allerton Conference on Communication,
Control, and Computing (Allerton) (Sept. 2015). DOI: 10.1109/allerton.2015.7447180.
URL: http://dx.doi.org/10.1109/ALLERTON.2015.7447180.

[28] Olga Russakovsky et al. “Imagenet large scale visual recognition challenge”. In: International
journal of computer vision 115.3 (2015), pp. 211–252.

[29] Karen Simonyan and Andrew Zisserman. Very Deep Convolutional Networks for Large-Scale
Image Recognition. 2014. arXiv: 1409.1556 [cs.CV].

[30] Jure Sokolic et al. “Robust Large Margin Deep Neural Networks”. In: IEEE Transactions on
Signal Processing 65.16 (Aug. 2017), pp. 4265–4280. ISSN: 1941-0476. DOI: 10.1109/tsp.
2017.2708039. URL: http://dx.doi.org/10.1109/TSP.2017.2708039.

[31] Carsen Stringer et al. “High-dimensional geometry of population responses in visual cortex”.
In: Nature (2019), p. 1.

[32] Christian Szegedy et al. Going Deeper with Convolutions. 2014. arXiv: 1409.4842 [cs.CV].
[33] Christian Szegedy et al. “Intriguing properties of neural networks”. In: (2013). arXiv: 1312.

6199 [cs.CV].
[34] Mingxing Tan et al. MnasNet: Platform-Aware Neural Architecture Search for Mobile. 2018.

arXiv: 1807.11626 [cs.CV].
[35] Hidenori Tanaka et al. “From deep learning to mechanistic understanding in neuroscience: the

structure of retinal prediction”. In: Advances in Neural Information Processing Systems. 2019,
pp. 8535–8545.

[36] Stefan Van Der Walt, S Chris Colbert, and Gael Varoquaux. “The NumPy array: a structure for
efficient numerical computation”. In: Computing in Science & Engineering 13.2 (2011), p. 22.

[37] Rey Reza Wiyatno et al. “Adversarial Examples in Modern Machine Learning: A Review”. In:
arXiv preprint arXiv:1911.05268 (2019).

[38] Daniel LK Yamins et al. “Performance-optimized hierarchical models predict neural responses
in higher visual cortex”. In: Proceedings of the National Academy of Sciences 111.23 (2014),
pp. 8619–8624.

10

https://doi.org/10.1109/allerton.2015.7447180
http://dx.doi.org/10.1109/ALLERTON.2015.7447180
https://arxiv.org/abs/1409.1556
https://doi.org/10.1109/tsp.2017.2708039
https://doi.org/10.1109/tsp.2017.2708039
http://dx.doi.org/10.1109/TSP.2017.2708039
https://arxiv.org/abs/1409.4842
https://arxiv.org/abs/1312.6199
https://arxiv.org/abs/1312.6199
https://arxiv.org/abs/1807.11626

7 Supplementary

7.1 Methods

7.2 Code

All code was implemented in the Python programming language, version 3.6.9. To create and train our
models, we used PyTorch, an open-sourced machine learning Python library [26], version 1.2.0+cpu.
Most analysis was done using NumPy, a scientific computing Python library [36], version 1.17.2.

The architecture we used for our CIFAR-10 experiments is below:

1. ReLU(Conv2d(in channels = 3, out channels = 6, kernel size = 5-by-5, strides = 1-by-1))
2. MaxPool2d(kernel size = 2-by-2, strides = 2-by-2)
3. ReLU(Conv2d(in channels = 6, out channels = 16, kernel size = 5-by-5, strides = 1-by-1))
4. MaxPool2d(kernel size = 2-by-2, strides = 2-by-2)
5. ReLU(Fully Connected Layer(in dimension = 400, out dimension = 2000))
6. ReLU(Fully Connected Layer(in dimension = 2000, out dimension = 1000))
7. Fully Connected Layer(in dimension = 1000, out dimension = 10)

7.3 Stringer, Pachitariu Theorem 5

If the expected gradient magnitude of Φ is finite i.e. Es
[
||∇sΦ(s)||2

]
<∞, then λn = o(n−1−2/d).

11

	Introduction
	Methods
	Datasets
	Models
	Analysis

	Results
	CNNs Trained on ImageNet Decay Faster Than Fractal Bound
	Eigenspectra Are Invariant To Inputs Outside the Training Distribution
	Images with Additive Gaussian Noise
	Images of Reduced Dimension
	Datasets Composed of ``Robust'' and ``Non-Robust'' Features

	Different Models obey Significantly Different Power Laws
	Regularized Loss Functions Affect Eigenspectra

	Conclusion
	Acknowledgments
	References
	Supplementary
	Methods
	Code
	Stringer, Pachitariu Theorem 5

