
Weight Perturbation: An Optimal Architecture

and Learning Technique for Analog VLSI

Feedforward and Recurrent Multi-Layer Networks

Marwan Jabri & Barry Flower

Systems Engineering and Design Automation Laboratory

School of Electrical Engineering

University of Sydney

Abstract

Previous work on analog VLSI implementation of multi-layer perceptrons with

on-chip learning has mainly targeted the implementation of algorithms like back-

propagation. Although back-propagation is e�cient, its implementation in ana-

log VLSI requires excessive computational hardware. In this paper we show that

using gradient descent with direct approximation of the gradient instead of back-

propagation is cheapest for parallel analog implementations. We also show that

this technique (we call \weight perturbation") is suitable for multi-layer recurrent

networks as well. A discrete level analog implementation showing the training of

an XOR network as an example is also presented.

I. Introduction

Many researchers have recently proposed architectures for VLSI implementation of

multi-layer perceptron. Most of the reported work has addressed digital implemen-

1



tation [2]. Furman and associates [1] have reported an analog implementation of back-

propagation. In both digital and analog reported work, back-propagation was selected

because of its e�ciency and popularity. For analog, the implementation of on-chip

learning algorithms requires bi-directional synapses and the generation of the derivative

of neuron transfer functions with respect to their input. As the area and power of a

synapse has an important e�ect on the total chip area and the resulting size of net-

work that can be implemented, its minimisation is important. Furthermore, in analog

implementation, the generation of the derivative is a rather of a di�cult task. These

complications are even more ampli�ed when recurrent networks are being implemented

as the number of synapses may grow as the square of the number of neurons.

Recently, the Madaline Rule III (MR III) was suggested as an alternative to back-

propagation for analog implementation [4]. This rule can be considered implementing

gradient evaluation using \node perturbation" according to:

�w

ij

= ��

�E

�net

i

x

j

(1)

where net

i

=

P

j

w

ij

x

j

and x

j

= f(net

j

) with f being the non-linear squashing function.

Therefore, in addition to the actual hardware needed for the normal operation of the

network, the implementation of the MR III learning rule for an N neuron network in

analog VLSI requires:

� An addressing module and wires routed to select and deliver the perturbation to

each neuron.

� either one or N multiplication hardware to compute the term

�E

�net

i

x

j

in addition

to the multiplication by the learning rate. If one multiplier is used then additional

multiplexing hardware is required.

� An addressing module and wires routed to select and read the x

j

terms.

2



Note that if greater training exibility is required in the sense of o�-chip access to the

gradient values, then the states of the neurons (x

j

) would need to be made available

o�-chip as well, which will require a multiplexing scheme and N chip pads.

An alternative approach to node perturbation is \weight perturbation" where the gra-

dient is approximated to a �nite di�erence, and we show in this paper that gradient

evaluation using \weight perturbation" is a cheaper solution, hardware and complexity

wise, and can be equally used to train recurrent networks.

II. Gradient Evaluation using Weight Perturbation

The gradient with respect to the weight can simply be evaluated by the approximation

@E

@w

ij

=

�E

�

pert

w

ij

+O(�

pert

w

ij

) =

E(w

ij

+ pert

ij

) �E(w

ij

)

pert

ij

+O(�

pert

w

ij

) (2)

if the perturbation �

p

ertw

ij

is small enough. This is the forward di�erence method and

the weight update rule becomes:

�w

ij

=

E(w

ij

+ pert

ij

)�E(w

ij

)

pert

ij

(3)

where E() is the total mean square error produced at the output of the network for a

given pair of input and training patterns and a given value of the weights.

The order of the error of the �nite di�erence approximation can be improved by using

the central di�erence method, so that;

@E

@w

ij

=

�E

�

pert

w

ij

+O(�

pert

w

2

ij

) =

E(w

ij

+

pert

ij

2

)�E(w

ij

�

pert

ij

2

)

pert

ij

+O(�

pert

w

2

ij

) (4)

if the perturbation �

p

ertw

ij

is again small enough, and the weight update rule becomes:

3



�w

ij

=

E(w

ij

+

pert

ij

2

)�E(w

ij

�

pert

ij

2

)

pert

ij

(5)

however, the number of forward relaxations of the network required is of the order N

3

rather than N

2

for the forward di�erence method. Thus either method can be selected

on the basis of a speed/accuracy trade-o�.

Note, that as � and pert

ij

are both constants, the analog implementation version can

simply be written as:

�w

ij

= G(pert

ij

)�E(w

ij

; pert

ij

) (6)

with

G(pert

ij

) = �

�

pert

ij

and

�E(w

ij

; pert

ij

) = E(w

ij

+ pert

ij

) �E(w

ij

)

The weight update hardware involves the evaluation of the error with perturbed and

unperturbed weight and then the multiplication by a constant.

This technique is ideal for analog VLSI implementation for the following reasons:

1. As the gradient

�E

�w

ij

is approximated to

E

pert

�E

�

pert

w

ij

(where �

pert

w

ij

is the perturbation

applied at weight w

ij

), no back-propagation pass is needed and only forward path

is required. This means, in terms of analog VLSI implementations, no bidirectional

circuits and hardware for the back-propagation are needed. The hardware used for

the operation of the network is used for the training. Only single simple circuits

to implement the weight update are required. This simpli�es considerably the

implementation.

4



2. Compared to node perturbation our technique does not require the two neuron

addressing modules, routing and extra multiplication listed above.

Our technique does not require any overheads in routing and addressing connections to

every neuron to deliver the perturbations as the same wires used to access the weights

are used to deliver weight perturbations. Furthermore, node perturbation requires extra

routing to access the output state of each neuron and extra multiplication hardware is

needed for the

�E

�net

i

x

j

terms which is not the case with weight perturbation. Finally,

with weight perturbation, the approximated gradient values can be made available if

needed at a rather low cost

1

III. Simulations

The \weight perturbation" technique was used on two test cases: XOR (feedforward

and recurrent) and Intra-Cardiac Electro-Grams (ICEG). The learning procedure is

implemented as shown in Figure 1.

A. XOR

i. Feedforward XOR

The XOR network used has 1 hidden layer with two hidden units, two input units acting

as pins and one output unit. The training was done in the on-line mode. The network

parameters are shown in Table 1. The total mean squared error is shown in Figure 2

for both training with back-propagation and weight perturbation.

1

If the mean square error is required o�-chip then only one single extra pad is required. Otherwise, if

approximated gradient values are to be calculated o�-chip, then no extra chip area or pads are required

as the output of the network would be accessible anyway.

5



for each pattern p f

E = ForwardPass()

ClearDeltaWeights()

for each weight w

ij

do f

Epert = ApplyPerturbate(w

ij

)

DeltaError = Epert - E

DeltaW[i][j] = - � * DeltaError/Perturbation

RemovePerturbation(w

ij

)

g

g

Figure 1: Weight perturbation algorithm in its simplest form. This procedure can be

used either for on-line or batch training.

Table 1: Con�guration parameters for training XOR

Parameter Value

Perturbation strength 0.00001

Learning rate 0.3

Convergence criteria 0.001

Initial weight range 0.3

Sensitivity criteria 0.3

6



0

0.05

0.1

0.15

0.2

0.25

0 20 40 60 80 100 120 140 160

'xor-wp.err'

'xor-bp.err'

Figure 2: Mean square error for XOR training using back-propagation (xor-bp.err) and

weight perturbation (xor-wp.err).

As Figure 4 shows and as one may expect, the overall shape of the error as function of

training iteration are very similar. All 4 XOR patterns are training in 145 iterations

with both techniques (the �nal average mean square error are not however equal). A

study of the weight produced by both techniques show that they are extremely similar

(the di�erences were not visible from weight density plots).

ii. Recurrent XOR

A multi-layer recurrent was trained using weight perturbation. The architecture of the

network is shown in Figure 3 and the training parameters are shown in Table 2.

The same architecture was trained using Recurrent Back-Propagation based on the

algorithm of Pineda [3]. The training error curves are shown in Figure 4. Although

the two training techniques started from identical initial conditions, the convergence

speed was di�erent and the �nal weight solution was di�erent for both techniques. This

7



Table 2: Parameters of the XOR recurrent network.

Parameter RBP RWP

Perturbation strength NA 0.001

Neuron relaxation constant 0.01 0.01

Weight relaxation constant 0.1 NA

Network stability constant 0.000001 0.000001

Learning rate 0.3 0.3

Convergence criteria 0.1 0.1

Initial weight range 0.7 0.7

Sensitivity criteria 0.3 0.3

Offset node

Figure 3: Architecture of the XOR recurrent network.

8



may be attributed to di�erent learning steps (perturbation strength) in the case of the

weight perturbation technique.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 1000 2000 3000 4000 5000 6000

'xor-rwp.err'

'xor-rbp.err'

Figure 4: Mean square error for the weight perturbation and recurrent back-propagation

training.

B. ICEG Classi�cation

Another of our tests is on the training of a three layer perceptron to classify Intra-

Cardiac Electro-Grams (ICEG). The size of the training set is 120 patterns, and the

network has 21 input units, 10 hidden units and 5 output units. Figure 5 shows the

mean square error for weight perturbation and back-propagation training.

Following the training we have tested the trained networks on a set of 2600 patterns.

The training with back-propagation and weight perturbation has led to an identical

performance 91% of correct classi�cation.

IV. Implementation

9



0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 20 40 60 80 100 120 140 160 180 200

'iceg-wp.err'

'iceg-bp.err'

Figure 5: Mean square error for Intra-Cardiac Electro-Gram training using

back-propagation (iceg-bp.err) and weight perturbation (iceg-wp.err).

To show the feasibility of learning with analog implementation of weight perturbation,

we have constructed a discrete component implementation of an XOR network. Figure 7

shows a block diagram of the network used and Figure 6 shows a picture of the hardware

implementation (synapse and neuron boards). In addition a PC was provided as a

controller to orchestrate the presentation of training vectors and weight updates. The

weights were stored as a voltage on capacitors which are periodically updated.

The voltage range for a signal is �10:0V and the weight values also have a range of

�10:0V . This means that a mean square error of 10:0V

2

indicates that the network

output signal and the training signal vary by 32%.

Figure 8 shows a training session of the xor network reaching a mean square error of

8:0V

2

using the weight perturbation algorithm. The noise apparent is due to A/D

sampling errors and noise on the network due to weight and training vector refresh. We

note that convergence occurs inspite of this noise level, demonstrating the robustness

10



Figure 6: Picture of the Xor Hardware (synapse and neuron boards).

11



outin

storage

weight

+

-

+

-

Vref

in
out

+10V

-10V +10V+5V

Figure 7: Xor Hardware Implementation Circuit Block Diagram

12



xor.error

Mean Square Error

3X x 100.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

45.00

50.00

55.00

60.00

65.00

70.00

75.00

80.00

85.00

90.00

95.00

100.00

105.00

110.00

115.00

0.00 0.20 0.40 0.60 0.80 1.00

Figure 8: Mean square error of training hardware XOR network

of the weight perturbation optimising technique to noise.

V. Conclusions

In this paper we show that weight perturbation is a very cheap and exible learn-

ing technique for analog implementations of neural networks. We also show that it

is more exible than back-propagation and node perturbation (MR III). We demon-

strate using simulations that weight perturbation produces the same performance as

back-propagation and recurrent back-propagation. A discrete analog implementation

was used to demonstrate the feasibility of multi-layer feedforward training using weight

perturbation. The same technique can be used to train simple recurrent networks (like

Elman networks) and continuously running recurrent networks for temporal sequences

recognition (like Williams and Zipser networks). For all these networks it is easy to

see that as far as training is concerned, the hardware implementation using a weight

13



perturbation architecture is very similar to that required for the normal operation of

the networks.

VI. Acknowledgments

This research is supported by the Australian Research Council and a Sydney University

Special Project grant.

14



References

[1] B. Furman, J. White, and A Abidi. CMOS analog implementation of back propaga-

tion algorithm. In Abstracts of the First Annual INNS Meeting, page 381, Boston,

USA, 1988.

[2] J.N. Hwang and S.Y. Kung. Parallel Algorithms/Architectures for Neural Networks.

Journal of VLSI Signal Processing, 221{251, 1989.

[3] Fernando J. Pineda. Recurrent Backpropagation and the Dynamical Approach to

Adaptive Neural Computation. Neural Computation, 1(2):161{172, 1989.

[4] Bernard Widrow and Michael A. Lehr. 30 years of adaptive neural networks: per-

ceptron, madaline, and backpropagation. Proceedings of the IEEE, 78(9):1415{1442,

1990.

15



List of Figures

1 Weight perturbation algorithm in its simplest form. This procedure can

be used either for on-line or batch training. : : : : : : : : : : : : : : : : 6

2 Mean square error for XOR training using back-propagation (xor-bp.err)

and weight perturbation (xor-wp.err). : : : : : : : : : : : : : : : : : : : 7

3 Architecture of the XOR recurrent network. : : : : : : : : : : : : : : : : 8

4 Mean square error for the weight perturbation and recurrent back-propagation

training. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 9

5 Mean square error for Intra-Cardiac Electro-Gram training using back-

propagation (iceg-bp.err) and weight perturbation (iceg-wp.err). : : : : 10

6 Picture of the Xor Hardware (synapse and neuron boards). : : : : : : : 11

7 Xor Hardware Implementation Circuit Block Diagram : : : : : : : : : : 12

8 Mean square error of training hardware XOR network : : : : : : : : : : 13

16



List of Tables

1 Con�guration parameters for training XOR : : : : : : : : : : : : : : : : 6

2 Parameters of the XOR recurrent network. : : : : : : : : : : : : : : : : 8

17


