Memory Architectures in Deep (Reinforcement)
Learning

Rylan Schaeffer
March 15th, 2019

Deep Learning: Classics and Trends

- Motivation

- History of Memory Architectures in Deep Learning
- Neural Turing Machine (NTM)

- Differentiable Neural Computer (DNC)

- Memory, Reinforcement Learning and Inference Network
(MERLIN)

- Recurrent neural networks are theoretically Turing-complete [9],
but practical problems proliferate

- Recurrent neural networks are theoretically Turing-complete [9],
but practical problems proliferate

- Vanilla LSTMs struggle on simple tasks requiring memory:
copying sequences, adding numbers presented digit by digit,
memorizing key-value pairs, etc

- Recurrent neural networks are theoretically Turing-complete [9],
but practical problems proliferate

- Vanilla LSTMs struggle on simple tasks requiring memory:
copying sequences, adding numbers presented digit by digit,
memorizing key-value pairs, etc

- Approach: Use introspective attention mechanism to
manipulate, store, retrieve specific information (memory)

History of Memory Architectures in Deep Learning

- Memory Networks (2014) [14]

- Neural Turing Machines (2014) [4]

- Pointer Networks (2015) [11]

- End-to-End Memory Networks (2015) [10]

- Differentiable Neural Computer (2016) [5]

- Associative Long Short-Term Memory (2016) [2]
- Lie Access Neural Turing Machine (2016) [17]

- Memory, RL and Inference Network (2018) [12]
- Kanerva Machine (2018) [15]

- Relational Memory Core (2018) [8]

- Reconstructive Memory Agent (2018) [6]

- Dynamic Kanerva Machine (2018) [16]

- Improvements to DNC (2019) [1]

Neural Turing Machine

Read Vector
Outputs

Inputs

Write Vector

Neural Turing Machine

- Couple a neural network to an
external 2D matrix

Read Vector
Outputs

Inputs

Write Vector

Neural Turing Machine

- Couple a neural network to an
external 2D matrix

Read Vector

- Enable network to learn
reading/writing by defining
interactions in differentiable
manner

Outputs

Inputs

Write Vector

Neural Turing Machine

- Couple a neural network to an
external 2D matrix

Read Vector

- Enable network to learn
reading/writing by defining
interactions in differentiable
manner

Outputs

- Specifically, read & write are
defined as soft attention
mechanism over entire matrix

Inputs

Write Vector

Terminology

- Weights: Parameters of network

Terminology

- Weights: Parameters of network

- Weighting: "Probability” vector w used to determine weighted
combinations of memory contents

Terminology

- Weights: Parameters of network
- Weighting: "Probability” vector w used to determine weighted
combinations of memory contents
- The set of N-dimensional weightings Ay is defined as follows:
N

AvE{weRY :w €[0,1,) w <1}

=1

Terminology

- Weights: Parameters of network

- Weighting: "Probability” vector w used to determine weighted
combinations of memory contents

- The set of N-dimensional weightings Ay is defined as follows:

N
AvE{weRY :w €[0,1,) w <1}

=1

- Weighting with sum < 1 will be subtly influential for DNC

Neural Turing Machine [4] - Reading

- Notation: Memory matrix has R rows and C columns, denoted M;

Neural Turing Machine [4] - Reading

- Notation: Memory matrix has R rows and C columns, denoted M;

- To read from memory, network uses read heads

Neural Turing Machine [4] - Reading

- Notation: Memory matrix has R rows and C columns, denoted M;
- To read from memory, network uses read heads
- Each read head emits a weighting wy € Ag

Neural Turing Machine [4] - Reading

- Notation: Memory matrix has R rows and C columns, denoted M;
- To read from memory, network uses read heads
- Each read head emits a weighting wy € Ag

- Each read head returns to network a weighted combination of
memory rows called a read vector, r; € R¢

Iy < MtTWt

Neural Turing Machine [4] - Reading

- Notation: Memory matrix has R rows and C columns, denoted M;
- To read from memory, network uses read heads
- Each read head emits a weighting wy € Ag

- Each read head returns to network a weighted combination of
memory rows called a read vector, r; € R¢

Iy < MtTWt

- Network makes parallel reads, one per read head

Neural Turing Machine [4] - Reading

- Notation: Memory matrix has R rows and C columns, denoted M;
- To read from memory, network uses read heads
- Each read head emits a weighting wy € Ag

- Each read head returns to network a weighted combination of
memory rows called a read vector, r; € R¢

Iy < MtTWt
- Network makes parallel reads, one per read head

- DNC differs only in how weighting w; is generated

Neural Turing Machine [4] - Writing

- To write to memory, network has write heads

Neural Turing Machine [4] - Writing

- To write to memory, network has write heads
- Each write head emits three vectors:

Neural Turing Machine [4] - Writing

- To write to memory, network has write heads
- Each write head emits three vectors:
- Weighting wy € Ag

Neural Turing Machine [4] - Writing

- To write to memory, network has write heads
- Each write head emits three vectors:

- Weighting wy € Ag

- Frase vector e; € R® with values € (0,1)

Neural Turing Machine [4] - Writing

- To write to memory, network has write heads
- Each write head emits three vectors:

- Weighting wy € Ag

- Frase vector e; € R® with values € (0,1)

- New content vector v; € R®

Neural Turing Machine [4] - Writing

- To write to memory, network has write heads
- Each write head emits three vectors:
- Weighting wy € Ag
- Frase vector e; € R® with values € (0,1)
- New content vector v; € R¢
- Each write head modifies every row in memory by (partially)
erasing old values and adding new values

Mt — Mt+1 o (1 — WtetT) + WtVtT

Neural Turing Machine [4] - Writing

- To write to memory, network has write heads
- Each write head emits three vectors:

- Weighting wy € Ag

- Frase vector e; € R® with values € (0,1)

- New content vector v; € R®

- Each write head modifies every row in memory by (partially)
erasing old values and adding new values
Mt — Mt+1 o (1 — WtetT) + WtVtT

- Here, o denotes element-wise multiplication

Neural Turing Machine [4] - Writing

- To write to memory, network has write heads
- Each write head emits three vectors:

- Weighting wy € Ag

- Frase vector e; € R® with values € (0,1)

- New content vector v; € R®

- Each write head modifies every row in memory by (partially)
erasing old values and adding new values
M¢ < Miyqo (1—weee!) + wevy
- Here, o denotes element-wise multiplication

- Writes are performed in two sequential steps (erase, then add)
to permit parallel writes

Neural Turing Machine [4] - Writing

- To write to memory, network has write heads
- Each write head emits three vectors:

- Weighting wy € Ag

- Frase vector e; € R® with values € (0,1)

- New content vector v; € R®

- Each write head modifies every row in memory by (partially)
erasing old values and adding new values
M¢ < Migq o (1— wee) + weve!
- Here, o denotes element-wise multiplication

- Writes are performed in two sequential steps (erase, then add)
to permit parallel writes

- DNC differs only in how weighting w; is generated

Neural Turing Machine [4] - Attention Weightings

- Four steps to generate each read/write head’s weightings wy:

Neural Turing Machine [4] - Attention Weightings

- Four steps to generate each read/write head’s weightings wy:

- Content: Network emits search key k; € R® and search key
strength 8 € [1, c0)

w[i] < Softmax(BSimilarity(ke, M¢[i]))

Neural Turing Machine [4] - Attention Weightings

- Four steps to generate each read/write head’s weightings wy:
- Content: Network emits search key k; € R® and search key
strength 8 € [1, c0)
w[i] < Softmax(BSimilarity(ke, M¢[i]))
- Interpolation: Network emits scalar g; to blend content-based
weighting with previous weighting

th = geWe© A+ (T — ge)We 4

Neural Turing Machine [4] - Attention Weightings

- Four steps to generate each read/write head’s weightings wy:

- Content: Network emits search key k; € R® and search key
strength 8 € [1, c0)

w[i] < Softmax(BSimilarity(ke, M¢[i]))

- Interpolation: Network emits scalar g; to blend content-based

weighting with previous weighting
WE < gewr© + (T — ge)We_s

- Location: Network emits distribution over permitted shift values

(e.g. -1,0, 1) s; to rotationally shift weighting (mod num of rows)

wilil] < S50 wilsii —]

Neural Turing Machine [4] - Attention Weightings

- Four steps to generate each read/write head’s weightings wy:

- Content: Network emits search key k; € R® and search key
strength 8 € [1, c0)

w[i] < Softmax(BSimilarity(ke, M¢[i]))

- Interpolation: Network emits scalar g; to blend content-based

weighting with previous weighting
WE < gewr© + (T — ge)We_s

- Location: Network emits distribution over permitted shift values

(e.g. -1,0, 1) s; to rotationally shift weighting (mod num of rows)

wili] ¢ S50 wililseli —]
- Sharpen: Network emits scalar 4; > 1to sharpen weighting
w[i] = Softmax(wi[i])

Differentiable Neural Computer [5] - Motivation

- Problem: NTM has no mechanism to read sequential writes if a
write head jumps

Differentiable Neural Computer [5] - Motivation

- Problem: NTM has no mechanism to read sequential writes if a
write head jumps

- Approach: Use a temporal link matrix that represents degree to
which row | was written to after row j

Differentiable Neural Computer [5] - Motivation

- Problem: NTM has no mechanism to read sequential writes if a
write head jumps

- Approach: Use a temporal link matrix that represents degree to
which row | was written to after row j

- Problem: NTM has no mechanism to prevent memory blocks
from overlapping/interfering

Differentiable Neural Computer [5] - Motivation

- Problem: NTM has no mechanism to read sequential writes if a
write head jumps

- Approach: Use a temporal link matrix that represents degree to
which row | was written to after row j

- Problem: NTM has no mechanism to prevent memory blocks
from overlapping/interfering

- Problem: NTM has no mechanism to indicate memory blocks are
no longer needed

Differentiable Neural Computer [5] - Motivation

- Problem: NTM has no mechanism to read sequential writes if a
write head jumps

- Approach: Use a temporal link matrix that represents degree to
which row | was written to after row j

- Problem: NTM has no mechanism to prevent memory blocks
from overlapping/interfering

- Problem: NTM has no mechanism to indicate memory blocks are
no longer needed

- Approach: Enable network to learn dynamic memory
management

Differentiable Neural Computer [5] - Motivation

- Problem: NTM has no mechanism to read sequential writes if a
write head jumps

- Approach: Use a temporal link matrix that represents degree to
which row | was written to after row j

- Problem: NTM has no mechanism to prevent memory blocks
from overlapping/interfering

- Problem: NTM has no mechanism to indicate memory blocks are
no longer needed

- Approach: Enable network to learn dynamic memory
management

- Proposal: Use different attention mechanisms for reading and
for writing

Differentiable Neu

ral Computer [5] - Picture

a. Controller

CQ—
I

b. Read & Write Heads c. Memory d. Temporal Links

. ——) Write j
—) Read1 {—[_

—> Read2

—)

Differentiable Neural Computer [5] - Reading

- Goal: Generate weighting based on content and location-based
previous reads

1

Differentiable Neural Computer [5] - Reading

- Goal: Generate weighting based on content and location-based
previous reads

- Network emits search key k; € R¢ and key strength 3 € [1, 00)
and computes content (read) weighting c;

cili] < Softmax(BSimilarity(ke, M¢[i]))

1

Differentiable Neural Computer [5] - Reading

- Goal: Generate weighting based on content and location-based
previous reads

- Network emits search key k; € R¢ and key strength 3 € [1, 00)
and computes content (read) weighting c;

cili] < Softmax(BSimilarity(ke, M¢[i]))

- Assume a temporal link matrix Ly € [0, 1]?*F exists that
represents degree to which row i was written to after row j

1

Differentiable Neural Computer [5] - Reading

- Goal: Generate weighting based on content and location-based
previous reads
- Network emits search key k; € R¢ and key strength 3 € [1, 00)
and computes content (read) weighting c;
cili] < Softmax(BSimilarity(ke, M¢[i]))

- Assume a temporal link matrix Ly € [0, 1]?*F exists that
represents degree to which row i was written to after row j
- Define forward weighting and backward weighting: f;, by € Ag:

read
ft — LtWt71

by < L wiead

1

Differentiable Neural Computer [5] - Reading

- Goal: Generate weighting based on content and location-based
previous reads

- Network emits search key k; € R¢ and key strength 3 € [1, 00)
and computes content (read) weighting c;

cili] < Softmax(BSimilarity(ke, M¢[i]))

- Assume a temporal link matrix Ly € [0, 1]?*F exists that
represents degree to which row i was written to after row j
- Define forward weighting and backward weighting: f;, by € Ag:

ft — LtW{ia1d
by < L wiead
- Network emits a read mode weighting my € A3 to adjudicate

between the backward, content and forward weightings

wiead me[1]by + me[2]ce + me[3]F;

1

Differentiable Neural Computer [5] - Temporal Link Matrix

- Goal: Track the degree that a row i was written to after row j
using a temporal link matrix L; € [0, 1]**R

Differentiable Neural Computer [5] - Temporal Link Matrix

- Goal: Track the degree that a row i was written to after row j
using a temporal link matrix L; € [0, 1]**R

- Define a precedence weighting pt € Ag, where py[i] represents
degree to which row i was last row written to

pon
R

pe ¢ (1= D W™ [)pesr + wy'™e

r=1

Differentiable Neural Computer [5] - Temporal Link Matrix

- Goal: Track the degree that a row i was written to after row j
using a temporal link matrix L; € [0, 1]**R

- Define a precedence weighting pt € Ag, where py[i] represents
degree to which row i was last row written to

pon
R

pe ¢ (1= D W™ [)pesr + wy'™e

r=1
- Then, use the precedent weighting to construct the temporal
link matrix

Lo+ O
LJi,i] < 0
Leli,] = (1= wi™] = W™) Leoali,] + wi™ [i]pe[j]

Differentiable Neural Computer [5] - Writing

- Goal: Write using content lookup, constrained by memory
management system

Differentiable Neural Computer [5] - Writing

- Goal: Write using content lookup, constrained by memory
management system

- Network emits search key k; € R¢ and key strength 3 € [1, 00)
and computes content (write) weighting

cili] < Softmax(BSimilarity(ke, M¢[i]))

Differentiable Neural Computer [5] - Writing

- Goal: Write using content lookup, constrained by memory
management system

- Network emits search key k; € R¢ and key strength 3 € [1, 00)
and computes content (write) weighting

cili] < Softmax(BSimilarity(ke, M¢[i]))

- Assume learned dynamic memory management allocation
weighting a; € A exists that represents degree to which each
row can be written to

Differentiable Neural Computer [5] - Writing

- Goal: Write using content lookup, constrained by memory
management system

- Network emits search key k; € R¢ and key strength 3 € [1, 00)
and computes content (write) weighting

cili] < Softmax(BSimilarity(ke, M¢[i]))

- Assume learned dynamic memory management allocation
weighting a; € A exists that represents degree to which each
row can be written to

- Network emits two gates, write and allocation gy, g¢ € [0, 1], to
interpolate content weighting with allocation weighting

< gr'(gfac+ (1—-g¢)t’)

write
Wi

Differentiable Neural Computer [5] - Writing

- Goal: Write using content lookup, constrained by memory
management system

- Network emits search key k; € R¢ and key strength 3 € [1, 00)
and computes content (write) weighting

cili] < Softmax(BSimilarity(ke, M¢[i]))

- Assume learned dynamic memory management allocation
weighting a; € A exists that represents degree to which each
row can be written to

- Network emits two gates, write and allocation gy, g¢ € [0, 1], to
interpolate content weighting with allocation weighting

write

W™ < gi'(gfar + (1 - g¢)ct’)
- Like NTM, network also emits erase vector e; € (0,1)¢ and new
content vector v; € R¢, and updates the memory:

M, Mt+‘l ® (1 _ W¥vr\teet7) 4 thvntevtT

Differentiable Neural Computer [5] - Memory Management

- Goal: Specify which memory rows can be written to

14

Differentiable Neural Computer [5] - Memory Management

- Goal: Specify which memory rows can be written to
- For each read head, network indicates whether previously read
contents are still needed using a free gates fI € [0, 1]

14

Differentiable Neural Computer [5] - Memory Management

- Goal: Specify which memory rows can be written to

- For each read head, network indicates whether previously read
contents are still needed using a free gates fI € [0, 1]

- Indicate which rows are still needed by creating usage weighting
ur € [0,1]R

read heads

Yr H (1-fiwg_y)
h=1

Up = (Ug_1 + (1= U_1) o W1®) o oy

14

Differentiable Neural Computer [5] - Memory Management

- Goal: Specify which memory rows can be written to

- For each read head, network indicates whether previously read
contents are still needed using a free gates fI € [0, 1]

- Indicate which rows are still needed by creating usage weighting
ur € [0,1]R

read heads

Yr H (1-fiwg_y)
h=1

Up = (Ug_1 + (1= U_1) o W1®) o oy

- Create the allocation weighting a; € Ar by sorting the usages.
Let ¢¢[i] be the index of the i-th least used location,

j—1
ar[geljl] = (1= velelfID) [T veloelil

i=1

14

DNC [5] - Dynamic Memory Management Experiment

DNC [5] - Testing Graph Experiments

- How well does DNC perform at reasoning in graph structures,
compared against NTM and LSTM?

16

DNC [5] - Testing Graph Experiments

- How well does DNC perform at reasoning in graph structures,
compared against NTM and LSTM?

- 2 graph datasets

16

DNC [5] - Testing Graph Experiments

- How well does DNC perform at reasoning in graph structures,
compared against NTM and LSTM?
- 2 graph datasets

- bAbI [13]: programmatically generated natural language questions
for textual reasoning

16

DNC [5] - Testing Graph Experiments

- How well does DNC perform at reasoning in graph structures,
compared against NTM and LSTM?
- 2 graph datasets
- bAbI [13]: programmatically generated natural language questions
for textual reasoning
- Randomly generated planar graphs consisting of 3-tuples: (source,
destination, edge label)

16

DNC [5] - Testing Graph Experiments

- How well does DNC perform at reasoning in graph structures,
compared against NTM and LSTM?
- 2 graph datasets
- bAbI [13]: programmatically generated natural language questions
for textual reasoning
- Randomly generated planar graphs consisting of 3-tuples: (source,
destination, edge label)

- 3 types of queries: path traversal, shortest path, inferred
relations

16

DNC [5] - bAbI Results

Task LSTM NTM DNC1 DNC2

1: 1 supporting fact 28.4+1.5 40.6+6.7 9.0+12.6 16.2+13.7
2: 2 supporting facts 56.0£1.5 56.3+1.5 39.2 1 20.5 | 47.5+17.3
3: 3 supporting facts 51.3+14 47.8+1.7 30.6 £ 16.4 | 44.3+14.5
4: 2 argument relations 0.8+0.5 0.9+0.7 04+0.7 0.4+03
5: 3 argument relations 3.2+0.5 1.9+0.8 1.5+1.0 1.94+0.6
6: yes/no questions 15.2+1.5 18.4+1.6 69175 11.1+7.1
7: counting 16.4+1.4 19.9+2.5 9817.0 15.447.1
8: lists/sets 17.7+1.2 18.5+4.9 55+5.9 10.0+£6.6
9: simple negation 154+£1.5 17.9£2.0 7.7L83 11.7+£7.4
10: indefinite knowledge 28.7£1.7 25.7+7.3 9.6+11.4 14.7£10.8
11: basic coreference 122435 24.4£7.0 3.3+5.7 7.248.1
12: conjunction 5.4+0.6 21.9+6.6 5.0+ 6.3 10.1£8.1
13: compound coreference | 7.2+2.3 8.240.8 3.1+36 55434
14: time reasoning 55.941.2 449+13.0 |[11.0£7.5 | 150+74
15: basic deduction 47.0+1.7 46.5+1.6 27.2 +20.1 | 40.2+11.1
16: basic induction 53.31+1.3 | 53.8+14 53.6+1.9 54.7+1.3
17: positional reasoning 348+4.1 29.9 1+ 5.2 | 32.4£8.0 30.94+10.1
18: size reasoning 5.0£14 45£13 42+1.8 43421
19: path finding 90.9+£1.1 86.5+£194 | 64.6 £ 37.4 | 75.84+30.4
20: agents motivations 1.3+0.4 1.4+0.6 0.0+0.1 0.0+ 0.0
Mean Error (%) 27.3+0.8 28.5+29 16.7+ 7.6 20.84£7.1 (12
e en v 4 P e m e e 1 = s I,

DNC [5] - Custom Graphs Experiment

Training Data
a. Random Graph

Underground Input:
{(OxfordCircus, TottenhamCtRd, Central)
(ottenhamCtRd, OxfordGirus, Central)
(BakerSt, Marylebone, Circle)

(BakerSt, Marylebone, Bakerioo)
(BakerSt, OxfordCircus, Bakerloo)

(LeicesterSq, CharingCross, Northern)
(TottenhamCtRd, LeicesterSq, Northern)
(OxfordCircus,

Test Examples
b. London Underground

Shortest

Piccadilly
us

Westminste

Traversal Question:

(OxfordCircus, _, Central, (_, _, Circlo)
Circl), (., Circl),

Answer:

(OxfordCircus, NottingHillGate, Central)
P:

! . Bakerloo)
(OxfordCircus, NottingHilGate, Centra)
(OxfordCircus, Euston, Victoria)

- 84 edges in total

ti
addington, Circle)

(Embankment, Waterloo, Bakerloo)
(Waterloo, GreenPark, Jubiee)

Shortest Path Question:
(Moorgate, PicadilyCircus,)

Answer:
(Moorgate, Bark. Nothern)

(Bank, Holoor, Centra)

(Holborn, LeicesterSa, Picadly)
(LeicesterSa PicadilyCirus, Picacily)

c. Family Tree

lan | Jodie

Alan_|Lindsey

Mary Becky

Simon Freya

Family Tree Input:
(Chariotte, Alan, Father)
(Simon, Steve, Father)
(Steve , Simon, Son’)

(Melanio, Alison, Mother)
(Lindsey, Fergus, Sont)

(Bob, Jane, Mother)
(Natalio, Alce, Mother)
(Mary, lan, Father)
(Jane, Alice, Daughtert)
(Mat, Chariotte, Mother)

- 54 edges in total

Maternal Great Uncle

o

Charlotte Alison

e

Liam Nina

Fergus | Jane

Mat Alice Bob

Natalie

Inference Question:
(Froya, _, MaternalGroatUncle)

Answer:
(Freya, Fergus, MateralGreatUncle)

DNC [5] - Custom Graphs Experiment

a. Read and Write Weightings

Gragh gefiiton

o

. London Underground Map

L}
L
]
g L}
3 L
H
§
B o S
H icastar Sc>Charing Gross
5| Tttontam Cour R Lecost 5]
> l. n d. Read Key e. Location Content
n
> Piccadilly W L}
BakedooN n ¥ Decode & ¥ Decode
» L]
b. Read Mode

Key

s oo

N s o 1

19

DNC [5] - Reinforcement Learning Experiment

a. Weightings Decode c. Board States
G
T | | |4 T\
=y
T | | A4 l
T r‘
T A
c A 4
g c
£° |
gc ||
Sa
A
M Write Head
: d. Planned Action Decodings e. t-SNE Location Goal Labels
N
08 ~ Location Average
: o a0 o Action Frequen?:\es qynE \IMLL
N
SRR el @" <EN %@i@ b Y W L) Action 07 & p g8 ’M o
Time -

b. Goal T Constraints

Classification Accuracy
o
&

Hig
0 @%

HE“HH:\EDI 2 s 4 s

6b2 an 5b4 6r3 2b1 512 Action Number

20

DNC [5] - Reinforcement Learning Experiment

a. Curriculum Progress

Lesson

== DNC
- | STM

0 1000000 2000000 3000000 4000000 5000000
Learning Step

c. DNC Percent Optimal

46

Minimum Required Moves
IS

5 139 33 46
6 33 22 32
7| 84 17 18 30 44 50
1 2 3 4 5 6
Number of Constraints

b. DNC Performance on Complete Curriculum

Proportion

m perfect
W success
mincomplete

0
12345678910111213141516171819202122232425

Lesson

d. LSTM Percent Optimal

g ' 47
<>J 2
2 39
B a2
i |
g4 25
o
£ 5 S
£

6
.
= 7 18

1

48
38
42
22
10
4.7

3
2

47
34
43
18
3
14

1.1
3

g

14
0.47
0.16

)

4

48
31
44

2
0
0
0

5

Number of Constraints

32

14
0.16

21

Memory, RL and Inference Network [12] - Motivation

- Problem: On simple RL task, DNC required curriculum training to
learn how to use its memory

22

Memory, RL and Inference Network [12] - Motivation

- Problem: On simple RL task, DNC required curriculum training to
learn how to use its memory

- Greg Wayne [7] spurns end-to-end learning, instead arguing:

22

Memory, RL and Inference Network [12] - Motivation

- Problem: On simple RL task, DNC required curriculum training to
learn how to use its memory
- Greg Wayne [7] spurns end-to-end learning, instead arguing:

- Cost functions are diverse across areas and change over
development

22

Memory, RL and Inference Network [12] - Motivation

- Problem: On simple RL task, DNC required curriculum training to
learn how to use its memory
- Greg Wayne [7] spurns end-to-end learning, instead arguing:

- Cost functions are diverse across areas and change over
development

- Specialized systems allow efficient solution of key computational
sub-problems

22

Memory, RL and Inference Network [12] - Motivation

- Problem: On simple RL task, DNC required curriculum training to
learn how to use its memory
- Greg Wayne [7] spurns end-to-end learning, instead arguing:
- Cost functions are diverse across areas and change over

development
- Specialized systems allow efficient solution of key computational

sub-problems

- Approach: Use separate objective functions and networks for
memory, action selection.

22

Memory, RL and Inference Network [12] - Motivation

- Problem: On simple RL task, DNC required curriculum training to
learn how to use its memory
- Greg Wayne [7] spurns end-to-end learning, instead arguing:
- Cost functions are diverse across areas and change over
development
- Specialized systems allow efficient solution of key computational
sub-problems

- Approach: Use separate objective functions and networks for
memory, action selection.

- Train memory to learn predictive (generative) model of world in
unsupervised manner, and train actions via reinforcement
learning, granting agent access to memory

22

Memory, RL and Inference Network [12] - Motivation

- Problem: On simple RL task, DNC required curriculum training to
learn how to use its memory
- Greg Wayne [7] spurns end-to-end learning, instead arguing:
- Cost functions are diverse across areas and change over
development
- Specialized systems allow efficient solution of key computational
sub-problems

- Approach: Use separate objective functions and networks for
memory, action selection.

- Train memory to learn predictive (generative) model of world in
unsupervised manner, and train actions via reinforcement
learning, granting agent access to memory

- Compared three agent architectures (LSTM, MEM, MERLIN) across
a variety of tasks requiring memory

22

MERLIN [12] - LSTM

- I Image

- v Egocentric
translational and
rotational velocity

- ri_q: Previous reward
-+ ar_1: Previous action

- T: (Optional) Text
instruction

- hy: LSTM
- N Action probabilities

a. RL-LSTM
hy
ENVIRONMENT poLICY l
(It ve,re—1, Tt) —> Ot —> €t e il
ENCODER Policy Loss
o At 1

23

MERLIN [12]

b. RL-MEM
POLICY d
t
.o &
O
| 3
Mt,"; k' f
4 _
my
ENVIRONMENT
(It, v, me—1, Tg) = Ot —> €¢ el
ENCODER Policy Loss

e |

24

MERLIN [12]

c. MERLIN READ-ONLY POLICY

MEMORY-BASED PREDICTOR

€ —> Ny «— P 4= h; €-My

ENVIRONMENT
ENCODER KELoss
yi > 7
Ity ve, -1, Ty) = Ot q % =7 R -
POSTERIOR Policy Loss
l DECODER
oo (Ut 1

(It, Ry, Oy, Gp—1, 741, Tt)

Reconstruction Loss

25

MERLIN [12] - Memory-Based Predictor

MEMORY-BASED PREDICTOR " * ')

ke :

- 4V

€t —» Ny «— D €— ht <=y)
TENCODER KL Loss T 4@
- Ot q Zt

POSTERIOR
l DECODER

(It, R, Ogy Gp—1,T1—1,Tt)

Reconstruction Loss

26

MERLIN [12] - Memory-Based Predictor

- LSTM h¢_; outputs a
prior pt_q for the next
state variable z

MEMORY-BASED PREDICTOR " * ')

€t —» Ny «— D €— ht <=y

TENCODER KL Loss T

> Ot q 2t

POSTERIOR
l DECODER

(It, R, Ogy Gp—1,T1—1,Tt)

Reconstruction Loss

26

MERLIN [12] - Memory-Based Predictor

- LSTM h¢_4 outputs a
prior p;_; for the next
state variable z

. pt71 COﬂcateﬂated W|th MEMORY-BASED PREDICTOR "")
e¢, fed through ky» My <
.ee &9 AR
network to produce ny o &)/ bl
€ —> Ny 4— D 4= hy €=My :

TENCODER KL Loss T

- O q Zt

POSTERIOR
l DECODER

(It, R, Ogy Gp—1,T1—1,Tt)

Reconstruction Loss

26

MERLIN [12] - Memory-Based Predictor

- LSTM h¢_4 outputs a
prior p;_; for the next
state variable z

. pti1 Concatenated W|th MEMORY-BASED PREDICTOR "")
er, fed through Joy> M, <
.ee éyg N 4;
network to produce n; - 4)/‘ R
- State posterior €t —> Ny 4— P <= by €=My
Qt < Pt—1 + Nt T ENCODER KL Loss T

> Ot q 2t

POSTERIOR
l DECODER

(It, R, Ogy Gp—1,T1—1,Tt)

Reconstruction Loss

26

MERLIN [12] - Memory-Based Predictor

- LSTM h¢_4 outputs a
prior p;_; for the next
state variable z

. pti1 Concatenated W|th MEMORY-BASED PREDICTOR "")
er, fed through ky> M, +
network to produce n &

P t VAR

- State posterior €t —> Ny 4— P <= by €=My
Qt < Pt—1 + Nt T ENCODER KL Loss T

- zisampled fromgq;, T % =
decoded to $ oxcooen
reconstruct (It Ry, 0, G—1, 741, T)

Reconstruction Loss

observations and then
appended as new row
in Mg

26

MERLIN [12] - Memory-Based Predictor

MEMORY-BASED PREDICTOR " * ')

ke :

- 4V

€t —» Ny «— D €— ht <=y)
TENCODER KL Loss T 4@
- Ot q Zt

POSTERIOR
l DECODER

(It, R, Ogy Gp—1,T1—1,Tt)

Reconstruction Loss

27

MERLIN [12] - Memory-Based Predictor

’ PrOblem)) MEMORY-BASED PREDICTOR b
reconstructing inputs)
alone can result in k‘@;Mt‘»

IRV
loss of small, but RO o

€t —» Ny «— D €— ht <=y

TENCODER KL Loss T

> Ot q 2t

POSTERIOR
l DECODER

(It, R, Ogy Gp—1,T1—1,Tt)

Reconstruction Loss

critical information
(“bullet problem”)

27

MERLIN [12] - Memory-Based Predictor

’ PrOblem)) MEMORY-BASED PREDICTOR b
reconstructing inputs)
alone can result in k‘@;Mt‘»

IRV
loss of small, but RO o

. . . e —» N, «— = Ny -
critical information K ¢ P E ¢
T ENCODER KL Loss T

(“bullet problem”)
- O q Zt -
- Approach: Also |
reconstruct the return — o
A Iy, Ry, b, a1, e, T
prediction R, [3] (It, R, Ogy Gp—1,T1—1,Tt)
Reconstruction Loss

27

MERLIN [12] - Memory-Based Predictor

MEMORY-BASED PREDICTOR " * ')

ke :

- 4V

€t —» Ny «— D €— ht <=y)
TENCODER KL Loss T 4@
- Ot q Zt

POSTERIOR
l DECODER

(It, R, Ogy Gp—1,T1—1,Tt)

Reconstruction Loss

28

MERLIN [12] - Memory-Based Predictor

- Problem: Sampled
state variables z; have
no knowledge of
subsequent events

MEMORY-BASED PREDICTOR

PRIOR

€t —» Ny «— D €— ht <=y

TENCODER KL Loss T

> Ot q 2t

l DECODER

(It, R, Ogy Gp—1,T1—1,Tt)

Reconstruction Loss

Sal

POSTERIOR

28

MERLIN [12] - Memory-Based Predictor

- Problem: Sampled
state variables z; have

MEMORY-BASED PREDICTOR b
no knowledge of ()
subsequent events (..)/ k‘@:ﬂ:{t‘»

. . PRIOR ‘ :)
ApproaCh . €t —» N «— D <= ht =T
Concatenate z; with 4 et
filtered sum of | q Zt

subsequent state |
. DECODER
variables]

(=7 >t th_tzt’ in
memory

(It, R, Ogy Gp—1,T1—1,Tt)

Reconstruction Loss

28

MERLIN [12] - Memory the Game

Pairs of 8 Omniglot images are obscured. Agent looks at one image
at a time, trying to find pairs.

a Memory Game b o 9 9
° 80 U4NHR YRR YINKN
o ! XTé¢YyY XT4YyY XTe Y
2 - Y3+Y YieY N +Y
36 w5 S ;T XB 2Tl rTXS
8. S s o o o
& , 3 YBINN Y4 NN Y“eNN
I A — My NEY XSy
! Yoy YieY Mz ¢
L - - A AEE PEEESE XS

Number of Environment Steps 108

29

MERLIN [12] - One-Shot Navigation

C

Large Environment

o

Episode Score

o Large Environment

250 -

200

150

100

15000
MERUN
i 14000
w—RL-LSTM
— Flem 13000 3
>
o
12000 .2
T
g
/M 11000 §
1 10000
/
T T 9000
0.0 0.5 1.0 1.5 20
Number of Environment Steps 10°

30

MERLIN [12] - One-Shot Navigation

a bE cumme ewon C MERLIN Return Prediction
we -
g.% 15.0
130 weRuN = =33 85
5 120 -y §° b 3 12
& 104 c|§ s 105
<
£ 1008 sg 6 s 90
§ 28 2 75
T 80 oz 4 £ 60
e 70 3 g £ 45
E 60 o3 2 & 30
50 ££ 15
40 33 0.0
—r—————— g% 0
1 2 3 4 5 6 7 8 E 0 2 4 6 8 10

Sub-Episodes Sub-Episodes

o
(]
-

H
30 2 250 ‘o
5 §
5
25 =
& = 200 g 08
5 20 5 s
S & 150 2 06
] g o]
g 3 s
T p 100 3 0a
£ weRUN § g
2 — ALLsTM
§os = R s ¥ > 02
3 8
00 . 2 o 00
=50 20 -10 o w 10" 10° ! 10° 10° 10" 10° o' 10° 10°
Agent Steps to Goal Return Cost Coefficient Return Cost Coefficient

31

MERLIN [12] - One-Shot Navigation

«Q

Observation

Read Head 1 Read Head 2 Read Head 3

MERLIN

Gradient to z

No Return Prediction
Distance to the Goal (Pixels)
-388888288

0 “© 0 s
Agent Steps to Goal

Agent Steps to Goal

32

MERLIN [12] - Latent Learning

a b 13000
N o ® 1 1 o |
‘ ‘ 14 12000
2 o
12
i K % o 1) Y e s
@ 10 ?
o 3
$e MMMNWW/ —
® () 2 o MM f
L | k3 2
— 4
8000
* * * 2
[7000
Phase 1 Phase 2 Phase 3 0 1 2 3 4 5 6
Number of Environment Steps 10°
djz 1o
3
Policy H
Read 2. 09
Maximally Actated Memon 32
— R g8
28
o | — 2x 08
s F 3
T — 3@
2 [g=o7
§ . %
5 E R E2os
= .
- — & os
Phase 3 Observation Activation of Memory (a.u.) Observation at Encoding Time) 5 10 15
of Maximally Active Memory Agent Steps from Start of Phase 3

33

MERLIN [12] - Lesion Studies

= JAERLIN = ko Memory = Mo Betroactive Mem. Updating

a. Arbitrary Visuomotor Mapping

1800
1600
1400

i
M
-
=

1000
800
600
AD0

Episode Score

34

MERLIN [12] - Necessity of End-to-End Learning

Investigation of Gradient Stopping

500

400

[
(=]
o

Episode Score

0.2

«= Default (but Single Optimizer)

=== No Stop Gradient from Policy to z
=== Stop Gradient from MEM to z

=== No Stop Gradient from Policy to MEM

0.4 0.6 0.8 1.0
Number of Environment Steps 10°

35

References i

@ R.Csordas and). Schmidhuber.
Improving differentiable neural computers through memory
masking, de-allocation, and link distribution sharpness control.

In International Conference on Learning Representations, 2019.

[1. Danihelka, G. Wayne, B. Uria, N. Kalchbrenner, and A. Graves.
Associative long short-term memory.
arXiv preprint arXiv:1602.03032, 2016.

[1 M.A Gluck and C. E. Myers.
Hippocampal mediation of stimulus representation: A
computational theory.
Hippocampus, 3(4):491-516, 1993.

36

References ii

& A Graves, G. Wayne, and I. Danihelka.
Neural turing machines.
arXiv preprint arXiv:1410.5401, 2014.

[3 A Graves, G. Wayne, M. Reynolds, T. Harley, |. Danihelka,
A. Grabska-Barwinska, S. G. Colmenarejo, E. Grefenstette,
T. Ramalho, J. Agapiou, et al.
Hybrid computing using a neural network with dynamic
external memory.
Nature, 538(7626):471, 2016.

& c-C Hung, T. Lillicrap, J. Abramson, Y. Wu, M. Mirza, F. Carnevale,
A. Ahuja, and G. Wayne.
Optimizing agent behavior over long time scales by
transporting value.
arXiv preprint arXiv:1810.06721, 2018.

37

References iii

@ A. H. Marblestone, G. Wayne, and K. P. Kording.
Towards an integration of deep learning and neuroscience.
Frontiers in computational neuroscience, 10:94, 2016.

@ A. Santoro, R. Faulkner, D. Raposo, J. Rae, M. Chrzanowski,
T. Weber, D. Wierstra, O. Vinyals, R. Pascanu, and T. Lillicrap.
Relational recurrent neural networks.
In Advances in Neural Information Processing Systems, pages
7310-7321, 2018.

[3 H.T. Siegelmann and E. D. Sontasg.
On the computational power of neural nets.
Journal of computer and system sciences, 50(1):132-150, 1995.

38

References iv

[§ S.Sukhbaatar, J. Weston, R. Fergus, et al.
End-to-end memory networks.
In Advances in neural information processing systems, pages
2440-2448, 2015.

Ee) Vinyals, M. Fortunato, and N. Jaitly.
Pointer networks.
In Advances in Neural Information Processing Systems, pages
2692-2700, 2015.

[@ G.wayne, C.-C. Hung, D. Amos, et al.
Unsupervised predictive memory in a goal-directed agent.
arXiv preprint arXiv:1803.10760, 2018.

39

References v

@ J. Weston, A. Bordes, S. Chopra, A. M. Rush, B. van Merriénboer,
A. Joulin, and T. Mikolov.
Towards ai-complete question answering: A set of prerequisite
toy tasks.
arXiv preprint arXiv:1502.05698, 2015.

[J. Weston, S. Chopgra, and A. Bordes.
Memory networks.
arXiv preprint arXiv:1410.3916, 2015.

@ Y.Wu, G. Wayne, A. Graves, and T. Lillicrap.
The kanerva machine: A generative distributed memory.
arXiv preprint arXiv:1804.01756, 2018.

40

References vi

@ Y. Wu, G. Wayne, K. Gregor, and T. Lillicrap.
Learning attractor dynamics for generative memory.

In Advances in Neural Information Processing Systems, pages
9401-9410, 2018.

@ G.Yang.
Lie access neural turing machine.
arXiv preprint arXiv:1602.08671, 2016.

41

Theme Credit

Get the source of this theme and the demo presentation from
github.com/matze/mtheme

The theme itself is licensed under a Creative Commons
Attribution-ShareAlike 4.0 International License.

©@®O

42

github.com/matze/mtheme
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

