
Memory Architectures in Deep (Reinforcement)
Learning

Rylan Schaeffer
March 15th, 2019

Deep Learning: Classics and Trends



Roadmap

• Motivation
• History of Memory Architectures in Deep Learning
• Neural Turing Machine (NTM)
• Differentiable Neural Computer (DNC)
• Memory, Reinforcement Learning and Inference Network
(MERLIN)

1



Motivation

• Recurrent neural networks are theoretically Turing-complete [9],
but practical problems proliferate

• Vanilla LSTMs struggle on simple tasks requiring memory:
copying sequences, adding numbers presented digit by digit,
memorizing key-value pairs, etc

• Approach: Use introspective attention mechanism to
manipulate, store, retrieve specific information (memory)

2



Motivation

• Recurrent neural networks are theoretically Turing-complete [9],
but practical problems proliferate

• Vanilla LSTMs struggle on simple tasks requiring memory:
copying sequences, adding numbers presented digit by digit,
memorizing key-value pairs, etc

• Approach: Use introspective attention mechanism to
manipulate, store, retrieve specific information (memory)

2



Motivation

• Recurrent neural networks are theoretically Turing-complete [9],
but practical problems proliferate

• Vanilla LSTMs struggle on simple tasks requiring memory:
copying sequences, adding numbers presented digit by digit,
memorizing key-value pairs, etc

• Approach: Use introspective attention mechanism to
manipulate, store, retrieve specific information (memory)

2



History of Memory Architectures in Deep Learning

• Memory Networks (2014) [14]
• Neural Turing Machines (2014) [4]
• Pointer Networks (2015) [11]
• End-to-End Memory Networks (2015) [10]
• Differentiable Neural Computer (2016) [5]
• Associative Long Short-Term Memory (2016) [2]
• Lie Access Neural Turing Machine (2016) [17]
• Memory, RL and Inference Network (2018) [12]
• Kanerva Machine (2018) [15]
• Relational Memory Core (2018) [8]
• Reconstructive Memory Agent (2018) [6]
• Dynamic Kanerva Machine (2018) [16]
• Improvements to DNC (2019) [1]

3



Neural Turing Machine

• Couple a neural network to an
external 2D matrix

• Enable network to learn
reading/writing by defining
interactions in differentiable
manner

• Specifically, read & write are
defined as soft attention
mechanism over entire matrix

4



Neural Turing Machine

• Couple a neural network to an
external 2D matrix

• Enable network to learn
reading/writing by defining
interactions in differentiable
manner

• Specifically, read & write are
defined as soft attention
mechanism over entire matrix

4



Neural Turing Machine

• Couple a neural network to an
external 2D matrix

• Enable network to learn
reading/writing by defining
interactions in differentiable
manner

• Specifically, read & write are
defined as soft attention
mechanism over entire matrix

4



Neural Turing Machine

• Couple a neural network to an
external 2D matrix

• Enable network to learn
reading/writing by defining
interactions in differentiable
manner

• Specifically, read & write are
defined as soft attention
mechanism over entire matrix

4



Terminology

• Weights: Parameters of network

• Weighting: ”Probability” vector w used to determine weighted
combinations of memory contents

• The set of N-dimensional weightings ∆N is defined as follows:

∆N
def
= {w ∈ RN : wi ∈ [0, 1],

N∑
i=1

wi ≤ 1}

• Weighting with sum < 1 will be subtly influential for DNC

5



Terminology

• Weights: Parameters of network
• Weighting: ”Probability” vector w used to determine weighted
combinations of memory contents

• The set of N-dimensional weightings ∆N is defined as follows:

∆N
def
= {w ∈ RN : wi ∈ [0, 1],

N∑
i=1

wi ≤ 1}

• Weighting with sum < 1 will be subtly influential for DNC

5



Terminology

• Weights: Parameters of network
• Weighting: ”Probability” vector w used to determine weighted
combinations of memory contents

• The set of N-dimensional weightings ∆N is defined as follows:

∆N
def
= {w ∈ RN : wi ∈ [0, 1],

N∑
i=1

wi ≤ 1}

• Weighting with sum < 1 will be subtly influential for DNC

5



Terminology

• Weights: Parameters of network
• Weighting: ”Probability” vector w used to determine weighted
combinations of memory contents

• The set of N-dimensional weightings ∆N is defined as follows:

∆N
def
= {w ∈ RN : wi ∈ [0, 1],

N∑
i=1

wi ≤ 1}

• Weighting with sum < 1 will be subtly influential for DNC

5



Neural Turing Machine [4] - Reading

• Notation: Memory matrix has R rows and C columns, denoted Mt

• To read from memory, network uses read heads
• Each read head emits a weighting wt ∈ ∆R

• Each read head returns to network a weighted combination of
memory rows called a read vector, rt ∈ RC

rt ← Mt
Twt

• Network makes parallel reads, one per read head
• DNC differs only in how weighting wt is generated

6



Neural Turing Machine [4] - Reading

• Notation: Memory matrix has R rows and C columns, denoted Mt

• To read from memory, network uses read heads

• Each read head emits a weighting wt ∈ ∆R

• Each read head returns to network a weighted combination of
memory rows called a read vector, rt ∈ RC

rt ← Mt
Twt

• Network makes parallel reads, one per read head
• DNC differs only in how weighting wt is generated

6



Neural Turing Machine [4] - Reading

• Notation: Memory matrix has R rows and C columns, denoted Mt

• To read from memory, network uses read heads
• Each read head emits a weighting wt ∈ ∆R

• Each read head returns to network a weighted combination of
memory rows called a read vector, rt ∈ RC

rt ← Mt
Twt

• Network makes parallel reads, one per read head
• DNC differs only in how weighting wt is generated

6



Neural Turing Machine [4] - Reading

• Notation: Memory matrix has R rows and C columns, denoted Mt

• To read from memory, network uses read heads
• Each read head emits a weighting wt ∈ ∆R

• Each read head returns to network a weighted combination of
memory rows called a read vector, rt ∈ RC

rt ← Mt
Twt

• Network makes parallel reads, one per read head
• DNC differs only in how weighting wt is generated

6



Neural Turing Machine [4] - Reading

• Notation: Memory matrix has R rows and C columns, denoted Mt

• To read from memory, network uses read heads
• Each read head emits a weighting wt ∈ ∆R

• Each read head returns to network a weighted combination of
memory rows called a read vector, rt ∈ RC

rt ← Mt
Twt

• Network makes parallel reads, one per read head

• DNC differs only in how weighting wt is generated

6



Neural Turing Machine [4] - Reading

• Notation: Memory matrix has R rows and C columns, denoted Mt

• To read from memory, network uses read heads
• Each read head emits a weighting wt ∈ ∆R

• Each read head returns to network a weighted combination of
memory rows called a read vector, rt ∈ RC

rt ← Mt
Twt

• Network makes parallel reads, one per read head
• DNC differs only in how weighting wt is generated

6



Neural Turing Machine [4] - Writing

• To write to memory, network has write heads

• Each write head emits three vectors:

• Weighting wt ∈ ∆R

• Erase vector et ∈ RC with values ∈ (0, 1)
• New content vector vt ∈ RC

• Each write head modifies every row in memory by (partially)
erasing old values and adding new values

Mt ← Mt+1 ◦ (1− wtetT) + wtvtT

• Here, ◦ denotes element-wise multiplication
• Writes are performed in two sequential steps (erase, then add)
to permit parallel writes

• DNC differs only in how weighting wt is generated

7



Neural Turing Machine [4] - Writing

• To write to memory, network has write heads
• Each write head emits three vectors:

• Weighting wt ∈ ∆R

• Erase vector et ∈ RC with values ∈ (0, 1)
• New content vector vt ∈ RC

• Each write head modifies every row in memory by (partially)
erasing old values and adding new values

Mt ← Mt+1 ◦ (1− wtetT) + wtvtT

• Here, ◦ denotes element-wise multiplication
• Writes are performed in two sequential steps (erase, then add)
to permit parallel writes

• DNC differs only in how weighting wt is generated

7



Neural Turing Machine [4] - Writing

• To write to memory, network has write heads
• Each write head emits three vectors:

• Weighting wt ∈ ∆R

• Erase vector et ∈ RC with values ∈ (0, 1)
• New content vector vt ∈ RC

• Each write head modifies every row in memory by (partially)
erasing old values and adding new values

Mt ← Mt+1 ◦ (1− wtetT) + wtvtT

• Here, ◦ denotes element-wise multiplication
• Writes are performed in two sequential steps (erase, then add)
to permit parallel writes

• DNC differs only in how weighting wt is generated

7



Neural Turing Machine [4] - Writing

• To write to memory, network has write heads
• Each write head emits three vectors:

• Weighting wt ∈ ∆R

• Erase vector et ∈ RC with values ∈ (0, 1)

• New content vector vt ∈ RC

• Each write head modifies every row in memory by (partially)
erasing old values and adding new values

Mt ← Mt+1 ◦ (1− wtetT) + wtvtT

• Here, ◦ denotes element-wise multiplication
• Writes are performed in two sequential steps (erase, then add)
to permit parallel writes

• DNC differs only in how weighting wt is generated

7



Neural Turing Machine [4] - Writing

• To write to memory, network has write heads
• Each write head emits three vectors:

• Weighting wt ∈ ∆R

• Erase vector et ∈ RC with values ∈ (0, 1)
• New content vector vt ∈ RC

• Each write head modifies every row in memory by (partially)
erasing old values and adding new values

Mt ← Mt+1 ◦ (1− wtetT) + wtvtT

• Here, ◦ denotes element-wise multiplication
• Writes are performed in two sequential steps (erase, then add)
to permit parallel writes

• DNC differs only in how weighting wt is generated

7



Neural Turing Machine [4] - Writing

• To write to memory, network has write heads
• Each write head emits three vectors:

• Weighting wt ∈ ∆R

• Erase vector et ∈ RC with values ∈ (0, 1)
• New content vector vt ∈ RC

• Each write head modifies every row in memory by (partially)
erasing old values and adding new values

Mt ← Mt+1 ◦ (1− wtetT) + wtvtT

• Here, ◦ denotes element-wise multiplication
• Writes are performed in two sequential steps (erase, then add)
to permit parallel writes

• DNC differs only in how weighting wt is generated

7



Neural Turing Machine [4] - Writing

• To write to memory, network has write heads
• Each write head emits three vectors:

• Weighting wt ∈ ∆R

• Erase vector et ∈ RC with values ∈ (0, 1)
• New content vector vt ∈ RC

• Each write head modifies every row in memory by (partially)
erasing old values and adding new values

Mt ← Mt+1 ◦ (1− wtetT) + wtvtT

• Here, ◦ denotes element-wise multiplication

• Writes are performed in two sequential steps (erase, then add)
to permit parallel writes

• DNC differs only in how weighting wt is generated

7



Neural Turing Machine [4] - Writing

• To write to memory, network has write heads
• Each write head emits three vectors:

• Weighting wt ∈ ∆R

• Erase vector et ∈ RC with values ∈ (0, 1)
• New content vector vt ∈ RC

• Each write head modifies every row in memory by (partially)
erasing old values and adding new values

Mt ← Mt+1 ◦ (1− wtetT) + wtvtT

• Here, ◦ denotes element-wise multiplication
• Writes are performed in two sequential steps (erase, then add)
to permit parallel writes

• DNC differs only in how weighting wt is generated

7



Neural Turing Machine [4] - Writing

• To write to memory, network has write heads
• Each write head emits three vectors:

• Weighting wt ∈ ∆R

• Erase vector et ∈ RC with values ∈ (0, 1)
• New content vector vt ∈ RC

• Each write head modifies every row in memory by (partially)
erasing old values and adding new values

Mt ← Mt+1 ◦ (1− wtetT) + wtvtT

• Here, ◦ denotes element-wise multiplication
• Writes are performed in two sequential steps (erase, then add)
to permit parallel writes

• DNC differs only in how weighting wt is generated

7



Neural Turing Machine [4] - Attention Weightings

• Four steps to generate each read/write head’s weightings wt:

• Content: Network emits search key kt ∈ RC and search key
strength β ∈ [1,∞)

wct [i]← Softmax(βSimilarity(kt,Mt[i]))
• Interpolation: Network emits scalar gt to blend content-based
weighting with previous weighting

wg
t ← gtwt

c + (1− gt)wt−1

• Location: Network emits distribution over permitted shift values
(e.g. -1, 0, 1) st to rotationally shift weighting (mod num of rows)

wlt[i]←
∑R−1

j=0 w
g
t [j]st[i− j]

• Sharpen: Network emits scalar γt ≥ 1 to sharpen weighting
wt[i] = Softmax(wlt[i]γt)

8



Neural Turing Machine [4] - Attention Weightings

• Four steps to generate each read/write head’s weightings wt:
• Content: Network emits search key kt ∈ RC and search key
strength β ∈ [1,∞)

wct [i]← Softmax(βSimilarity(kt,Mt[i]))

• Interpolation: Network emits scalar gt to blend content-based
weighting with previous weighting

wg
t ← gtwt

c + (1− gt)wt−1

• Location: Network emits distribution over permitted shift values
(e.g. -1, 0, 1) st to rotationally shift weighting (mod num of rows)

wlt[i]←
∑R−1

j=0 w
g
t [j]st[i− j]

• Sharpen: Network emits scalar γt ≥ 1 to sharpen weighting
wt[i] = Softmax(wlt[i]γt)

8



Neural Turing Machine [4] - Attention Weightings

• Four steps to generate each read/write head’s weightings wt:
• Content: Network emits search key kt ∈ RC and search key
strength β ∈ [1,∞)

wct [i]← Softmax(βSimilarity(kt,Mt[i]))
• Interpolation: Network emits scalar gt to blend content-based
weighting with previous weighting

wg
t ← gtwt

c + (1− gt)wt−1

• Location: Network emits distribution over permitted shift values
(e.g. -1, 0, 1) st to rotationally shift weighting (mod num of rows)

wlt[i]←
∑R−1

j=0 w
g
t [j]st[i− j]

• Sharpen: Network emits scalar γt ≥ 1 to sharpen weighting
wt[i] = Softmax(wlt[i]γt)

8



Neural Turing Machine [4] - Attention Weightings

• Four steps to generate each read/write head’s weightings wt:
• Content: Network emits search key kt ∈ RC and search key
strength β ∈ [1,∞)

wct [i]← Softmax(βSimilarity(kt,Mt[i]))
• Interpolation: Network emits scalar gt to blend content-based
weighting with previous weighting

wg
t ← gtwt

c + (1− gt)wt−1

• Location: Network emits distribution over permitted shift values
(e.g. -1, 0, 1) st to rotationally shift weighting (mod num of rows)

wlt[i]←
∑R−1

j=0 w
g
t [j]st[i− j]

• Sharpen: Network emits scalar γt ≥ 1 to sharpen weighting
wt[i] = Softmax(wlt[i]γt)

8



Neural Turing Machine [4] - Attention Weightings

• Four steps to generate each read/write head’s weightings wt:
• Content: Network emits search key kt ∈ RC and search key
strength β ∈ [1,∞)

wct [i]← Softmax(βSimilarity(kt,Mt[i]))
• Interpolation: Network emits scalar gt to blend content-based
weighting with previous weighting

wg
t ← gtwt

c + (1− gt)wt−1

• Location: Network emits distribution over permitted shift values
(e.g. -1, 0, 1) st to rotationally shift weighting (mod num of rows)

wlt[i]←
∑R−1

j=0 w
g
t [j]st[i− j]

• Sharpen: Network emits scalar γt ≥ 1 to sharpen weighting
wt[i] = Softmax(wlt[i]γt)

8



Differentiable Neural Computer [5] - Motivation

• Problem: NTM has no mechanism to read sequential writes if a
write head jumps

• Approach: Use a temporal link matrix that represents degree to
which row i was written to after row j

• Problem: NTM has no mechanism to prevent memory blocks
from overlapping/interfering

• Problem: NTM has no mechanism to indicate memory blocks are
no longer needed

• Approach: Enable network to learn dynamic memory
management

• Proposal: Use different attention mechanisms for reading and
for writing

9



Differentiable Neural Computer [5] - Motivation

• Problem: NTM has no mechanism to read sequential writes if a
write head jumps

• Approach: Use a temporal link matrix that represents degree to
which row i was written to after row j

• Problem: NTM has no mechanism to prevent memory blocks
from overlapping/interfering

• Problem: NTM has no mechanism to indicate memory blocks are
no longer needed

• Approach: Enable network to learn dynamic memory
management

• Proposal: Use different attention mechanisms for reading and
for writing

9



Differentiable Neural Computer [5] - Motivation

• Problem: NTM has no mechanism to read sequential writes if a
write head jumps

• Approach: Use a temporal link matrix that represents degree to
which row i was written to after row j

• Problem: NTM has no mechanism to prevent memory blocks
from overlapping/interfering

• Problem: NTM has no mechanism to indicate memory blocks are
no longer needed

• Approach: Enable network to learn dynamic memory
management

• Proposal: Use different attention mechanisms for reading and
for writing

9



Differentiable Neural Computer [5] - Motivation

• Problem: NTM has no mechanism to read sequential writes if a
write head jumps

• Approach: Use a temporal link matrix that represents degree to
which row i was written to after row j

• Problem: NTM has no mechanism to prevent memory blocks
from overlapping/interfering

• Problem: NTM has no mechanism to indicate memory blocks are
no longer needed

• Approach: Enable network to learn dynamic memory
management

• Proposal: Use different attention mechanisms for reading and
for writing

9



Differentiable Neural Computer [5] - Motivation

• Problem: NTM has no mechanism to read sequential writes if a
write head jumps

• Approach: Use a temporal link matrix that represents degree to
which row i was written to after row j

• Problem: NTM has no mechanism to prevent memory blocks
from overlapping/interfering

• Problem: NTM has no mechanism to indicate memory blocks are
no longer needed

• Approach: Enable network to learn dynamic memory
management

• Proposal: Use different attention mechanisms for reading and
for writing

9



Differentiable Neural Computer [5] - Motivation

• Problem: NTM has no mechanism to read sequential writes if a
write head jumps

• Approach: Use a temporal link matrix that represents degree to
which row i was written to after row j

• Problem: NTM has no mechanism to prevent memory blocks
from overlapping/interfering

• Problem: NTM has no mechanism to indicate memory blocks are
no longer needed

• Approach: Enable network to learn dynamic memory
management

• Proposal: Use different attention mechanisms for reading and
for writing

9



Differentiable Neural Computer [5] - Picture

10



Differentiable Neural Computer [5] - Reading

• Goal: Generate weighting based on content and location-based
previous reads

• Network emits search key kt ∈ RC and key strength β ∈ [1,∞)

and computes content (read) weighting ct
ct[i]← Softmax(βSimilarity(kt,Mt[i]))

• Assume a temporal link matrix Lt ∈ [0, 1]R×R exists that
represents degree to which row i was written to after row j

• Define forward weighting and backward weighting: ft,bt ∈ ∆R:

ft ← Ltwread
t−1

bt ← LtTwread
t−1

• Network emits a read mode weighting mt ∈ ∆3 to adjudicate
between the backward, content and forward weightings

wread
t ← mt[1]bt +mt[2]ct +mt[3]ft

11



Differentiable Neural Computer [5] - Reading

• Goal: Generate weighting based on content and location-based
previous reads

• Network emits search key kt ∈ RC and key strength β ∈ [1,∞)

and computes content (read) weighting ct
ct[i]← Softmax(βSimilarity(kt,Mt[i]))

• Assume a temporal link matrix Lt ∈ [0, 1]R×R exists that
represents degree to which row i was written to after row j

• Define forward weighting and backward weighting: ft,bt ∈ ∆R:

ft ← Ltwread
t−1

bt ← LtTwread
t−1

• Network emits a read mode weighting mt ∈ ∆3 to adjudicate
between the backward, content and forward weightings

wread
t ← mt[1]bt +mt[2]ct +mt[3]ft

11



Differentiable Neural Computer [5] - Reading

• Goal: Generate weighting based on content and location-based
previous reads

• Network emits search key kt ∈ RC and key strength β ∈ [1,∞)

and computes content (read) weighting ct
ct[i]← Softmax(βSimilarity(kt,Mt[i]))

• Assume a temporal link matrix Lt ∈ [0, 1]R×R exists that
represents degree to which row i was written to after row j

• Define forward weighting and backward weighting: ft,bt ∈ ∆R:

ft ← Ltwread
t−1

bt ← LtTwread
t−1

• Network emits a read mode weighting mt ∈ ∆3 to adjudicate
between the backward, content and forward weightings

wread
t ← mt[1]bt +mt[2]ct +mt[3]ft

11



Differentiable Neural Computer [5] - Reading

• Goal: Generate weighting based on content and location-based
previous reads

• Network emits search key kt ∈ RC and key strength β ∈ [1,∞)

and computes content (read) weighting ct
ct[i]← Softmax(βSimilarity(kt,Mt[i]))

• Assume a temporal link matrix Lt ∈ [0, 1]R×R exists that
represents degree to which row i was written to after row j

• Define forward weighting and backward weighting: ft,bt ∈ ∆R:

ft ← Ltwread
t−1

bt ← LtTwread
t−1

• Network emits a read mode weighting mt ∈ ∆3 to adjudicate
between the backward, content and forward weightings

wread
t ← mt[1]bt +mt[2]ct +mt[3]ft

11



Differentiable Neural Computer [5] - Reading

• Goal: Generate weighting based on content and location-based
previous reads

• Network emits search key kt ∈ RC and key strength β ∈ [1,∞)

and computes content (read) weighting ct
ct[i]← Softmax(βSimilarity(kt,Mt[i]))

• Assume a temporal link matrix Lt ∈ [0, 1]R×R exists that
represents degree to which row i was written to after row j

• Define forward weighting and backward weighting: ft,bt ∈ ∆R:

ft ← Ltwread
t−1

bt ← LtTwread
t−1

• Network emits a read mode weighting mt ∈ ∆3 to adjudicate
between the backward, content and forward weightings

wread
t ← mt[1]bt +mt[2]ct +mt[3]ft

11



Differentiable Neural Computer [5] - Temporal Link Matrix

• Goal: Track the degree that a row i was written to after row j
using a temporal link matrix Lt ∈ [0, 1]R×R

• Define a precedence weighting pt ∈ ∆R, where pt[i] represents
degree to which row i was last row written to

p0 ← 0

pt ← (1−
R∑
r=1

wwritet [r])pt+1 + wwrite
t

• Then, use the precedent weighting to construct the temporal
link matrix

L0 ← 0
Lt[i, i]← 0
Lt[i, j]← (1− wwritet [i]− wwritet [j])Lt−1[i, j] + wwritet [i]pt−1[j]

12



Differentiable Neural Computer [5] - Temporal Link Matrix

• Goal: Track the degree that a row i was written to after row j
using a temporal link matrix Lt ∈ [0, 1]R×R

• Define a precedence weighting pt ∈ ∆R, where pt[i] represents
degree to which row i was last row written to

p0 ← 0

pt ← (1−
R∑
r=1

wwritet [r])pt+1 + wwrite
t

• Then, use the precedent weighting to construct the temporal
link matrix

L0 ← 0
Lt[i, i]← 0
Lt[i, j]← (1− wwritet [i]− wwritet [j])Lt−1[i, j] + wwritet [i]pt−1[j]

12



Differentiable Neural Computer [5] - Temporal Link Matrix

• Goal: Track the degree that a row i was written to after row j
using a temporal link matrix Lt ∈ [0, 1]R×R

• Define a precedence weighting pt ∈ ∆R, where pt[i] represents
degree to which row i was last row written to

p0 ← 0

pt ← (1−
R∑
r=1

wwritet [r])pt+1 + wwrite
t

• Then, use the precedent weighting to construct the temporal
link matrix

L0 ← 0
Lt[i, i]← 0
Lt[i, j]← (1− wwritet [i]− wwritet [j])Lt−1[i, j] + wwritet [i]pt−1[j]

12



Differentiable Neural Computer [5] - Writing

• Goal: Write using content lookup, constrained by memory
management system

• Network emits search key kt ∈ RC and key strength β ∈ [1,∞)

and computes content (write) weighting

ct[i]← Softmax(βSimilarity(kt,Mt[i]))

• Assume learned dynamic memory management allocation
weighting at ∈ ∆R exists that represents degree to which each
row can be written to

• Network emits two gates, write and allocation gwt ,gat ∈ [0, 1], to
interpolate content weighting with allocation weighting

wwrite
t ← gwt (gat at + (1− gat )cwt )

• Like NTM, network also emits erase vector et ∈ (0, 1)C and new
content vector vt ∈ RC, and updates the memory:

Mt ← Mt+1 ◦ (1− wwrite
t etT) + wwrite

t vtT

13



Differentiable Neural Computer [5] - Writing

• Goal: Write using content lookup, constrained by memory
management system

• Network emits search key kt ∈ RC and key strength β ∈ [1,∞)

and computes content (write) weighting

ct[i]← Softmax(βSimilarity(kt,Mt[i]))

• Assume learned dynamic memory management allocation
weighting at ∈ ∆R exists that represents degree to which each
row can be written to

• Network emits two gates, write and allocation gwt ,gat ∈ [0, 1], to
interpolate content weighting with allocation weighting

wwrite
t ← gwt (gat at + (1− gat )cwt )

• Like NTM, network also emits erase vector et ∈ (0, 1)C and new
content vector vt ∈ RC, and updates the memory:

Mt ← Mt+1 ◦ (1− wwrite
t etT) + wwrite

t vtT

13



Differentiable Neural Computer [5] - Writing

• Goal: Write using content lookup, constrained by memory
management system

• Network emits search key kt ∈ RC and key strength β ∈ [1,∞)

and computes content (write) weighting

ct[i]← Softmax(βSimilarity(kt,Mt[i]))

• Assume learned dynamic memory management allocation
weighting at ∈ ∆R exists that represents degree to which each
row can be written to

• Network emits two gates, write and allocation gwt ,gat ∈ [0, 1], to
interpolate content weighting with allocation weighting

wwrite
t ← gwt (gat at + (1− gat )cwt )

• Like NTM, network also emits erase vector et ∈ (0, 1)C and new
content vector vt ∈ RC, and updates the memory:

Mt ← Mt+1 ◦ (1− wwrite
t etT) + wwrite

t vtT

13



Differentiable Neural Computer [5] - Writing

• Goal: Write using content lookup, constrained by memory
management system

• Network emits search key kt ∈ RC and key strength β ∈ [1,∞)

and computes content (write) weighting

ct[i]← Softmax(βSimilarity(kt,Mt[i]))

• Assume learned dynamic memory management allocation
weighting at ∈ ∆R exists that represents degree to which each
row can be written to

• Network emits two gates, write and allocation gwt ,gat ∈ [0, 1], to
interpolate content weighting with allocation weighting

wwrite
t ← gwt (gat at + (1− gat )cwt )

• Like NTM, network also emits erase vector et ∈ (0, 1)C and new
content vector vt ∈ RC, and updates the memory:

Mt ← Mt+1 ◦ (1− wwrite
t etT) + wwrite

t vtT

13



Differentiable Neural Computer [5] - Writing

• Goal: Write using content lookup, constrained by memory
management system

• Network emits search key kt ∈ RC and key strength β ∈ [1,∞)

and computes content (write) weighting

ct[i]← Softmax(βSimilarity(kt,Mt[i]))

• Assume learned dynamic memory management allocation
weighting at ∈ ∆R exists that represents degree to which each
row can be written to

• Network emits two gates, write and allocation gwt ,gat ∈ [0, 1], to
interpolate content weighting with allocation weighting

wwrite
t ← gwt (gat at + (1− gat )cwt )

• Like NTM, network also emits erase vector et ∈ (0, 1)C and new
content vector vt ∈ RC, and updates the memory:

Mt ← Mt+1 ◦ (1− wwrite
t etT) + wwrite

t vtT
13



Differentiable Neural Computer [5] - Memory Management

• Goal: Specify which memory rows can be written to

• For each read head, network indicates whether previously read
contents are still needed using a free gates fht ∈ [0, 1]

• Indicate which rows are still needed by creating usage weighting
ut ∈ [0, 1]R

ψt ←
read heads∏

h=1

(1− fht wh
t−1)

ut ← (ut−1 + (1− ut−1) ◦ wwrite
t−1 ) ◦ ψt

• Create the allocation weighting at ∈ ∆R by sorting the usages.
Let ϕt[i] be the index of the i-th least used location,

at[ϕt[j]]← (1− ut[ϕt[j]])
j−1∏
i=1

ut[ϕt[i]]

14



Differentiable Neural Computer [5] - Memory Management

• Goal: Specify which memory rows can be written to
• For each read head, network indicates whether previously read
contents are still needed using a free gates fht ∈ [0, 1]

• Indicate which rows are still needed by creating usage weighting
ut ∈ [0, 1]R

ψt ←
read heads∏

h=1

(1− fht wh
t−1)

ut ← (ut−1 + (1− ut−1) ◦ wwrite
t−1 ) ◦ ψt

• Create the allocation weighting at ∈ ∆R by sorting the usages.
Let ϕt[i] be the index of the i-th least used location,

at[ϕt[j]]← (1− ut[ϕt[j]])
j−1∏
i=1

ut[ϕt[i]]

14



Differentiable Neural Computer [5] - Memory Management

• Goal: Specify which memory rows can be written to
• For each read head, network indicates whether previously read
contents are still needed using a free gates fht ∈ [0, 1]

• Indicate which rows are still needed by creating usage weighting
ut ∈ [0, 1]R

ψt ←
read heads∏

h=1

(1− fht wh
t−1)

ut ← (ut−1 + (1− ut−1) ◦ wwrite
t−1 ) ◦ ψt

• Create the allocation weighting at ∈ ∆R by sorting the usages.
Let ϕt[i] be the index of the i-th least used location,

at[ϕt[j]]← (1− ut[ϕt[j]])
j−1∏
i=1

ut[ϕt[i]]

14



Differentiable Neural Computer [5] - Memory Management

• Goal: Specify which memory rows can be written to
• For each read head, network indicates whether previously read
contents are still needed using a free gates fht ∈ [0, 1]

• Indicate which rows are still needed by creating usage weighting
ut ∈ [0, 1]R

ψt ←
read heads∏

h=1

(1− fht wh
t−1)

ut ← (ut−1 + (1− ut−1) ◦ wwrite
t−1 ) ◦ ψt

• Create the allocation weighting at ∈ ∆R by sorting the usages.
Let ϕt[i] be the index of the i-th least used location,

at[ϕt[j]]← (1− ut[ϕt[j]])
j−1∏
i=1

ut[ϕt[i]]

14



DNC [5] - Dynamic Memory Management Experiment

15



DNC [5] - Testing Graph Experiments

• How well does DNC perform at reasoning in graph structures,
compared against NTM and LSTM?

• 2 graph datasets

• bAbI [13]: programmatically generated natural language questions
for textual reasoning

• Randomly generated planar graphs consisting of 3-tuples: (source,
destination, edge label)

• 3 types of queries: path traversal, shortest path, inferred
relations

16



DNC [5] - Testing Graph Experiments

• How well does DNC perform at reasoning in graph structures,
compared against NTM and LSTM?

• 2 graph datasets

• bAbI [13]: programmatically generated natural language questions
for textual reasoning

• Randomly generated planar graphs consisting of 3-tuples: (source,
destination, edge label)

• 3 types of queries: path traversal, shortest path, inferred
relations

16



DNC [5] - Testing Graph Experiments

• How well does DNC perform at reasoning in graph structures,
compared against NTM and LSTM?

• 2 graph datasets
• bAbI [13]: programmatically generated natural language questions
for textual reasoning

• Randomly generated planar graphs consisting of 3-tuples: (source,
destination, edge label)

• 3 types of queries: path traversal, shortest path, inferred
relations

16



DNC [5] - Testing Graph Experiments

• How well does DNC perform at reasoning in graph structures,
compared against NTM and LSTM?

• 2 graph datasets
• bAbI [13]: programmatically generated natural language questions
for textual reasoning

• Randomly generated planar graphs consisting of 3-tuples: (source,
destination, edge label)

• 3 types of queries: path traversal, shortest path, inferred
relations

16



DNC [5] - Testing Graph Experiments

• How well does DNC perform at reasoning in graph structures,
compared against NTM and LSTM?

• 2 graph datasets
• bAbI [13]: programmatically generated natural language questions
for textual reasoning

• Randomly generated planar graphs consisting of 3-tuples: (source,
destination, edge label)

• 3 types of queries: path traversal, shortest path, inferred
relations

16



DNC [5] - bAbI Results

17



DNC [5] - Custom Graphs Experiment

18



DNC [5] - Custom Graphs Experiment

19



DNC [5] - Reinforcement Learning Experiment

20



DNC [5] - Reinforcement Learning Experiment

21



Memory, RL and Inference Network [12] - Motivation

• Problem: On simple RL task, DNC required curriculum training to
learn how to use its memory

• Greg Wayne [7] spurns end-to-end learning, instead arguing:

• Cost functions are diverse across areas and change over
development

• Specialized systems allow efficient solution of key computational
sub-problems

• Approach: Use separate objective functions and networks for
memory, action selection.

• Train memory to learn predictive (generative) model of world in
unsupervised manner, and train actions via reinforcement
learning, granting agent access to memory

• Compared three agent architectures (LSTM, MEM, MERLIN) across
a variety of tasks requiring memory

22



Memory, RL and Inference Network [12] - Motivation

• Problem: On simple RL task, DNC required curriculum training to
learn how to use its memory

• Greg Wayne [7] spurns end-to-end learning, instead arguing:

• Cost functions are diverse across areas and change over
development

• Specialized systems allow efficient solution of key computational
sub-problems

• Approach: Use separate objective functions and networks for
memory, action selection.

• Train memory to learn predictive (generative) model of world in
unsupervised manner, and train actions via reinforcement
learning, granting agent access to memory

• Compared three agent architectures (LSTM, MEM, MERLIN) across
a variety of tasks requiring memory

22



Memory, RL and Inference Network [12] - Motivation

• Problem: On simple RL task, DNC required curriculum training to
learn how to use its memory

• Greg Wayne [7] spurns end-to-end learning, instead arguing:
• Cost functions are diverse across areas and change over
development

• Specialized systems allow efficient solution of key computational
sub-problems

• Approach: Use separate objective functions and networks for
memory, action selection.

• Train memory to learn predictive (generative) model of world in
unsupervised manner, and train actions via reinforcement
learning, granting agent access to memory

• Compared three agent architectures (LSTM, MEM, MERLIN) across
a variety of tasks requiring memory

22



Memory, RL and Inference Network [12] - Motivation

• Problem: On simple RL task, DNC required curriculum training to
learn how to use its memory

• Greg Wayne [7] spurns end-to-end learning, instead arguing:
• Cost functions are diverse across areas and change over
development

• Specialized systems allow efficient solution of key computational
sub-problems

• Approach: Use separate objective functions and networks for
memory, action selection.

• Train memory to learn predictive (generative) model of world in
unsupervised manner, and train actions via reinforcement
learning, granting agent access to memory

• Compared three agent architectures (LSTM, MEM, MERLIN) across
a variety of tasks requiring memory

22



Memory, RL and Inference Network [12] - Motivation

• Problem: On simple RL task, DNC required curriculum training to
learn how to use its memory

• Greg Wayne [7] spurns end-to-end learning, instead arguing:
• Cost functions are diverse across areas and change over
development

• Specialized systems allow efficient solution of key computational
sub-problems

• Approach: Use separate objective functions and networks for
memory, action selection.

• Train memory to learn predictive (generative) model of world in
unsupervised manner, and train actions via reinforcement
learning, granting agent access to memory

• Compared three agent architectures (LSTM, MEM, MERLIN) across
a variety of tasks requiring memory

22



Memory, RL and Inference Network [12] - Motivation

• Problem: On simple RL task, DNC required curriculum training to
learn how to use its memory

• Greg Wayne [7] spurns end-to-end learning, instead arguing:
• Cost functions are diverse across areas and change over
development

• Specialized systems allow efficient solution of key computational
sub-problems

• Approach: Use separate objective functions and networks for
memory, action selection.

• Train memory to learn predictive (generative) model of world in
unsupervised manner, and train actions via reinforcement
learning, granting agent access to memory

• Compared three agent architectures (LSTM, MEM, MERLIN) across
a variety of tasks requiring memory

22



Memory, RL and Inference Network [12] - Motivation

• Problem: On simple RL task, DNC required curriculum training to
learn how to use its memory

• Greg Wayne [7] spurns end-to-end learning, instead arguing:
• Cost functions are diverse across areas and change over
development

• Specialized systems allow efficient solution of key computational
sub-problems

• Approach: Use separate objective functions and networks for
memory, action selection.

• Train memory to learn predictive (generative) model of world in
unsupervised manner, and train actions via reinforcement
learning, granting agent access to memory

• Compared three agent architectures (LSTM, MEM, MERLIN) across
a variety of tasks requiring memory

22



MERLIN [12] - LSTM

• It: Image
• vt: Egocentric
translational and
rotational velocity

• rt−1: Previous reward
• at−1: Previous action
• T: (Optional) Text
instruction

• h̃t: LSTM
• ñt: Action probabilities

23



MERLIN [12]

24



MERLIN [12]

25



MERLIN [12] - Memory-Based Predictor

• LSTM ht−1 outputs a
prior pt−1 for the next
state variable zt

• pt−1 concatenated with
et, fed through
network to produce nt

• State posterior
qt ← pt−1 + nt

• zt sampled from qt,
decoded to
reconstruct
observations and then
appended as new row
in Mt

26



MERLIN [12] - Memory-Based Predictor

• LSTM ht−1 outputs a
prior pt−1 for the next
state variable zt

• pt−1 concatenated with
et, fed through
network to produce nt

• State posterior
qt ← pt−1 + nt

• zt sampled from qt,
decoded to
reconstruct
observations and then
appended as new row
in Mt

26



MERLIN [12] - Memory-Based Predictor

• LSTM ht−1 outputs a
prior pt−1 for the next
state variable zt

• pt−1 concatenated with
et, fed through
network to produce nt

• State posterior
qt ← pt−1 + nt

• zt sampled from qt,
decoded to
reconstruct
observations and then
appended as new row
in Mt

26



MERLIN [12] - Memory-Based Predictor

• LSTM ht−1 outputs a
prior pt−1 for the next
state variable zt

• pt−1 concatenated with
et, fed through
network to produce nt

• State posterior
qt ← pt−1 + nt

• zt sampled from qt,
decoded to
reconstruct
observations and then
appended as new row
in Mt

26



MERLIN [12] - Memory-Based Predictor

• LSTM ht−1 outputs a
prior pt−1 for the next
state variable zt

• pt−1 concatenated with
et, fed through
network to produce nt

• State posterior
qt ← pt−1 + nt

• zt sampled from qt,
decoded to
reconstruct
observations and then
appended as new row
in Mt

26



MERLIN [12] - Memory-Based Predictor

• Problem:
reconstructing inputs
alone can result in
loss of small, but
critical information
(“bullet problem”)

• Approach: Also
reconstruct the return
prediction R̂t [3]

27



MERLIN [12] - Memory-Based Predictor

• Problem:
reconstructing inputs
alone can result in
loss of small, but
critical information
(“bullet problem”)

• Approach: Also
reconstruct the return
prediction R̂t [3]

27



MERLIN [12] - Memory-Based Predictor

• Problem:
reconstructing inputs
alone can result in
loss of small, but
critical information
(“bullet problem”)

• Approach: Also
reconstruct the return
prediction R̂t [3]

27



MERLIN [12] - Memory-Based Predictor

• Problem: Sampled
state variables zt have
no knowledge of
subsequent events

• Approach:
Concatenate zt with
filtered sum of
subsequent state
variables
(1− γ)

∑
t′>t γ

t′−tzt′ in
memory

28



MERLIN [12] - Memory-Based Predictor

• Problem: Sampled
state variables zt have
no knowledge of
subsequent events

• Approach:
Concatenate zt with
filtered sum of
subsequent state
variables
(1− γ)

∑
t′>t γ

t′−tzt′ in
memory

28



MERLIN [12] - Memory-Based Predictor

• Problem: Sampled
state variables zt have
no knowledge of
subsequent events

• Approach:
Concatenate zt with
filtered sum of
subsequent state
variables
(1− γ)

∑
t′>t γ

t′−tzt′ in
memory

28



MERLIN [12] - Memory the Game

Pairs of 8 Omniglot images are obscured. Agent looks at one image
at a time, trying to find pairs.

29



MERLIN [12] - One-Shot Navigation

30



MERLIN [12] - One-Shot Navigation

31



MERLIN [12] - One-Shot Navigation

32



MERLIN [12] - Latent Learning

33



MERLIN [12] - Lesion Studies

34



MERLIN [12] - Necessity of End-to-End Learning

35



References i

R. Csordas and J. Schmidhuber.
Improving differentiable neural computers through memory
masking, de-allocation, and link distribution sharpness control.

In International Conference on Learning Representations, 2019.

I. Danihelka, G. Wayne, B. Uria, N. Kalchbrenner, and A. Graves.
Associative long short-term memory.
arXiv preprint arXiv:1602.03032, 2016.

M. A. Gluck and C. E. Myers.
Hippocampal mediation of stimulus representation: A
computational theory.
Hippocampus, 3(4):491–516, 1993.

36



References ii

A. Graves, G. Wayne, and I. Danihelka.
Neural turing machines.
arXiv preprint arXiv:1410.5401, 2014.

A. Graves, G. Wayne, M. Reynolds, T. Harley, I. Danihelka,
A. Grabska-Barwińska, S. G. Colmenarejo, E. Grefenstette,
T. Ramalho, J. Agapiou, et al.
Hybrid computing using a neural network with dynamic
external memory.
Nature, 538(7626):471, 2016.

C.-C. Hung, T. Lillicrap, J. Abramson, Y. Wu, M. Mirza, F. Carnevale,
A. Ahuja, and G. Wayne.
Optimizing agent behavior over long time scales by
transporting value.
arXiv preprint arXiv:1810.06721, 2018.

37



References iii

A. H. Marblestone, G. Wayne, and K. P. Kording.
Towards an integration of deep learning and neuroscience.
Frontiers in computational neuroscience, 10:94, 2016.

A. Santoro, R. Faulkner, D. Raposo, J. Rae, M. Chrzanowski,
T. Weber, D. Wierstra, O. Vinyals, R. Pascanu, and T. Lillicrap.
Relational recurrent neural networks.
In Advances in Neural Information Processing Systems, pages
7310–7321, 2018.

H. T. Siegelmann and E. D. Sontag.
On the computational power of neural nets.
Journal of computer and system sciences, 50(1):132–150, 1995.

38



References iv

S. Sukhbaatar, J. Weston, R. Fergus, et al.
End-to-end memory networks.
In Advances in neural information processing systems, pages
2440–2448, 2015.

O. Vinyals, M. Fortunato, and N. Jaitly.
Pointer networks.
In Advances in Neural Information Processing Systems, pages
2692–2700, 2015.

G. Wayne, C.-C. Hung, D. Amos, et al.
Unsupervised predictive memory in a goal-directed agent.
arXiv preprint arXiv:1803.10760, 2018.

39



References v

J. Weston, A. Bordes, S. Chopra, A. M. Rush, B. van Merriënboer,
A. Joulin, and T. Mikolov.
Towards ai-complete question answering: A set of prerequisite
toy tasks.
arXiv preprint arXiv:1502.05698, 2015.

J. Weston, S. Chopgra, and A. Bordes.
Memory networks.
arXiv preprint arXiv:1410.3916, 2015.

Y. Wu, G. Wayne, A. Graves, and T. Lillicrap.
The kanerva machine: A generative distributed memory.
arXiv preprint arXiv:1804.01756, 2018.

40



References vi

Y. Wu, G. Wayne, K. Gregor, and T. Lillicrap.
Learning attractor dynamics for generative memory.
In Advances in Neural Information Processing Systems, pages
9401–9410, 2018.

G. Yang.
Lie access neural turing machine.
arXiv preprint arXiv:1602.08671, 2016.

41



Theme Credit

Get the source of this theme and the demo presentation from

github.com/matze/mtheme

The theme itself is licensed under a Creative Commons
Attribution-ShareAlike 4.0 International License.

cba

42

github.com/matze/mtheme
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

