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Motivation

• Recurrent neural networks are theoretically Turing-complete [9],
but practical problems proliferate

• Vanilla LSTMs struggle on simple tasks requiring memory:
copying sequences, adding numbers presented digit by digit,
memorizing key-value pairs, etc

• Approach: Use introspective attention mechanism to
manipulate, store, retrieve specific information (memory)
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History of Memory Architectures in Deep Learning

• Memory Networks (2014) [14]
• Neural Turing Machines (2014) [4]
• Pointer Networks (2015) [11]
• End-to-End Memory Networks (2015) [10]
• Differentiable Neural Computer (2016) [5]
• Associative Long Short-Term Memory (2016) [2]
• Lie Access Neural Turing Machine (2016) [17]
• Memory, RL and Inference Network (2018) [12]
• Kanerva Machine (2018) [15]
• Relational Memory Core (2018) [8]
• Reconstructive Memory Agent (2018) [6]
• Dynamic Kanerva Machine (2018) [16]
• Improvements to DNC (2019) [1]
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Neural Turing Machine

• Couple a neural network to an
external 2D matrix

• Enable network to learn
reading/writing by defining
interactions in differentiable
manner

• Specifically, read & write are
defined as soft attention
mechanism over entire matrix
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Terminology

• Weights: Parameters of network

• Weighting: ”Probability” vector w used to determine weighted
combinations of memory contents

• The set of N-dimensional weightings ∆N is defined as follows:

∆N
def
= {w ∈ RN : wi ∈ [0, 1],

N∑
i=1

wi ≤ 1}

• Weighting with sum < 1 will be subtly influential for DNC
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Neural Turing Machine [4] - Reading

• Notation: Memory matrix has R rows and C columns, denoted Mt

• To read from memory, network uses read heads
• Each read head emits a weighting wt ∈ ∆R

• Each read head returns to network a weighted combination of
memory rows called a read vector, rt ∈ RC

rt ← Mt
Twt

• Network makes parallel reads, one per read head
• DNC differs only in how weighting wt is generated
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Neural Turing Machine [4] - Writing

• To write to memory, network has write heads

• Each write head emits three vectors:

• Weighting wt ∈ ∆R

• Erase vector et ∈ RC with values ∈ (0, 1)
• New content vector vt ∈ RC

• Each write head modifies every row in memory by (partially)
erasing old values and adding new values

Mt ← Mt+1 ◦ (1− wtetT) + wtvtT

• Here, ◦ denotes element-wise multiplication
• Writes are performed in two sequential steps (erase, then add)
to permit parallel writes

• DNC differs only in how weighting wt is generated
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Neural Turing Machine [4] - Attention Weightings

• Four steps to generate each read/write head’s weightings wt:

• Content: Network emits search key kt ∈ RC and search key
strength β ∈ [1,∞)

wct [i]← Softmax(βSimilarity(kt,Mt[i]))
• Interpolation: Network emits scalar gt to blend content-based
weighting with previous weighting

wg
t ← gtwt

c + (1− gt)wt−1

• Location: Network emits distribution over permitted shift values
(e.g. -1, 0, 1) st to rotationally shift weighting (mod num of rows)

wlt[i]←
∑R−1

j=0 w
g
t [j]st[i− j]

• Sharpen: Network emits scalar γt ≥ 1 to sharpen weighting
wt[i] = Softmax(wlt[i]γt)
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Differentiable Neural Computer [5] - Motivation

• Problem: NTM has no mechanism to read sequential writes if a
write head jumps

• Approach: Use a temporal link matrix that represents degree to
which row i was written to after row j

• Problem: NTM has no mechanism to prevent memory blocks
from overlapping/interfering

• Problem: NTM has no mechanism to indicate memory blocks are
no longer needed

• Approach: Enable network to learn dynamic memory
management

• Proposal: Use different attention mechanisms for reading and
for writing

9
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Differentiable Neural Computer [5] - Picture
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Differentiable Neural Computer [5] - Reading

• Goal: Generate weighting based on content and location-based
previous reads

• Network emits search key kt ∈ RC and key strength β ∈ [1,∞)

and computes content (read) weighting ct
ct[i]← Softmax(βSimilarity(kt,Mt[i]))

• Assume a temporal link matrix Lt ∈ [0, 1]R×R exists that
represents degree to which row i was written to after row j

• Define forward weighting and backward weighting: ft,bt ∈ ∆R:

ft ← Ltwread
t−1

bt ← LtTwread
t−1

• Network emits a read mode weighting mt ∈ ∆3 to adjudicate
between the backward, content and forward weightings

wread
t ← mt[1]bt +mt[2]ct +mt[3]ft

11



Differentiable Neural Computer [5] - Reading

• Goal: Generate weighting based on content and location-based
previous reads

• Network emits search key kt ∈ RC and key strength β ∈ [1,∞)

and computes content (read) weighting ct
ct[i]← Softmax(βSimilarity(kt,Mt[i]))

• Assume a temporal link matrix Lt ∈ [0, 1]R×R exists that
represents degree to which row i was written to after row j

• Define forward weighting and backward weighting: ft,bt ∈ ∆R:

ft ← Ltwread
t−1

bt ← LtTwread
t−1

• Network emits a read mode weighting mt ∈ ∆3 to adjudicate
between the backward, content and forward weightings

wread
t ← mt[1]bt +mt[2]ct +mt[3]ft

11



Differentiable Neural Computer [5] - Reading

• Goal: Generate weighting based on content and location-based
previous reads

• Network emits search key kt ∈ RC and key strength β ∈ [1,∞)

and computes content (read) weighting ct
ct[i]← Softmax(βSimilarity(kt,Mt[i]))

• Assume a temporal link matrix Lt ∈ [0, 1]R×R exists that
represents degree to which row i was written to after row j

• Define forward weighting and backward weighting: ft,bt ∈ ∆R:

ft ← Ltwread
t−1

bt ← LtTwread
t−1

• Network emits a read mode weighting mt ∈ ∆3 to adjudicate
between the backward, content and forward weightings

wread
t ← mt[1]bt +mt[2]ct +mt[3]ft

11



Differentiable Neural Computer [5] - Reading

• Goal: Generate weighting based on content and location-based
previous reads

• Network emits search key kt ∈ RC and key strength β ∈ [1,∞)

and computes content (read) weighting ct
ct[i]← Softmax(βSimilarity(kt,Mt[i]))

• Assume a temporal link matrix Lt ∈ [0, 1]R×R exists that
represents degree to which row i was written to after row j

• Define forward weighting and backward weighting: ft,bt ∈ ∆R:

ft ← Ltwread
t−1

bt ← LtTwread
t−1

• Network emits a read mode weighting mt ∈ ∆3 to adjudicate
between the backward, content and forward weightings

wread
t ← mt[1]bt +mt[2]ct +mt[3]ft

11



Differentiable Neural Computer [5] - Reading

• Goal: Generate weighting based on content and location-based
previous reads

• Network emits search key kt ∈ RC and key strength β ∈ [1,∞)

and computes content (read) weighting ct
ct[i]← Softmax(βSimilarity(kt,Mt[i]))

• Assume a temporal link matrix Lt ∈ [0, 1]R×R exists that
represents degree to which row i was written to after row j

• Define forward weighting and backward weighting: ft,bt ∈ ∆R:

ft ← Ltwread
t−1

bt ← LtTwread
t−1

• Network emits a read mode weighting mt ∈ ∆3 to adjudicate
between the backward, content and forward weightings

wread
t ← mt[1]bt +mt[2]ct +mt[3]ft

11



Differentiable Neural Computer [5] - Temporal Link Matrix

• Goal: Track the degree that a row i was written to after row j
using a temporal link matrix Lt ∈ [0, 1]R×R

• Define a precedence weighting pt ∈ ∆R, where pt[i] represents
degree to which row i was last row written to

p0 ← 0

pt ← (1−
R∑
r=1

wwritet [r])pt+1 + wwrite
t

• Then, use the precedent weighting to construct the temporal
link matrix

L0 ← 0
Lt[i, i]← 0
Lt[i, j]← (1− wwritet [i]− wwritet [j])Lt−1[i, j] + wwritet [i]pt−1[j]

12
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Differentiable Neural Computer [5] - Writing

• Goal: Write using content lookup, constrained by memory
management system

• Network emits search key kt ∈ RC and key strength β ∈ [1,∞)

and computes content (write) weighting

ct[i]← Softmax(βSimilarity(kt,Mt[i]))

• Assume learned dynamic memory management allocation
weighting at ∈ ∆R exists that represents degree to which each
row can be written to

• Network emits two gates, write and allocation gwt ,gat ∈ [0, 1], to
interpolate content weighting with allocation weighting

wwrite
t ← gwt (gat at + (1− gat )cwt )

• Like NTM, network also emits erase vector et ∈ (0, 1)C and new
content vector vt ∈ RC, and updates the memory:

Mt ← Mt+1 ◦ (1− wwrite
t etT) + wwrite

t vtT

13
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weighting at ∈ ∆R exists that represents degree to which each
row can be written to

• Network emits two gates, write and allocation gwt ,gat ∈ [0, 1], to
interpolate content weighting with allocation weighting

wwrite
t ← gwt (gat at + (1− gat )cwt )

• Like NTM, network also emits erase vector et ∈ (0, 1)C and new
content vector vt ∈ RC, and updates the memory:

Mt ← Mt+1 ◦ (1− wwrite
t etT) + wwrite

t vtT
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Differentiable Neural Computer [5] - Memory Management

• Goal: Specify which memory rows can be written to

• For each read head, network indicates whether previously read
contents are still needed using a free gates fht ∈ [0, 1]

• Indicate which rows are still needed by creating usage weighting
ut ∈ [0, 1]R

ψt ←
read heads∏

h=1

(1− fht wh
t−1)

ut ← (ut−1 + (1− ut−1) ◦ wwrite
t−1 ) ◦ ψt

• Create the allocation weighting at ∈ ∆R by sorting the usages.
Let ϕt[i] be the index of the i-th least used location,

at[ϕt[j]]← (1− ut[ϕt[j]])
j−1∏
i=1

ut[ϕt[i]]
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DNC [5] - Dynamic Memory Management Experiment
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DNC [5] - Testing Graph Experiments

• How well does DNC perform at reasoning in graph structures,
compared against NTM and LSTM?

• 2 graph datasets

• bAbI [13]: programmatically generated natural language questions
for textual reasoning

• Randomly generated planar graphs consisting of 3-tuples: (source,
destination, edge label)

• 3 types of queries: path traversal, shortest path, inferred
relations
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DNC [5] - bAbI Results
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DNC [5] - Custom Graphs Experiment
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DNC [5] - Custom Graphs Experiment
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DNC [5] - Reinforcement Learning Experiment
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DNC [5] - Reinforcement Learning Experiment
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Memory, RL and Inference Network [12] - Motivation

• Problem: On simple RL task, DNC required curriculum training to
learn how to use its memory

• Greg Wayne [7] spurns end-to-end learning, instead arguing:

• Cost functions are diverse across areas and change over
development

• Specialized systems allow efficient solution of key computational
sub-problems

• Approach: Use separate objective functions and networks for
memory, action selection.

• Train memory to learn predictive (generative) model of world in
unsupervised manner, and train actions via reinforcement
learning, granting agent access to memory

• Compared three agent architectures (LSTM, MEM, MERLIN) across
a variety of tasks requiring memory
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MERLIN [12] - LSTM

• It: Image
• vt: Egocentric
translational and
rotational velocity

• rt−1: Previous reward
• at−1: Previous action
• T: (Optional) Text
instruction

• h̃t: LSTM
• ñt: Action probabilities
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MERLIN [12]
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MERLIN [12]
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MERLIN [12] - Memory-Based Predictor

• LSTM ht−1 outputs a
prior pt−1 for the next
state variable zt

• pt−1 concatenated with
et, fed through
network to produce nt

• State posterior
qt ← pt−1 + nt

• zt sampled from qt,
decoded to
reconstruct
observations and then
appended as new row
in Mt
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MERLIN [12] - Memory-Based Predictor

• Problem:
reconstructing inputs
alone can result in
loss of small, but
critical information
(“bullet problem”)

• Approach: Also
reconstruct the return
prediction R̂t [3]
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MERLIN [12] - Memory-Based Predictor

• Problem: Sampled
state variables zt have
no knowledge of
subsequent events

• Approach:
Concatenate zt with
filtered sum of
subsequent state
variables
(1− γ)

∑
t′>t γ

t′−tzt′ in
memory
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MERLIN [12] - Memory the Game

Pairs of 8 Omniglot images are obscured. Agent looks at one image
at a time, trying to find pairs.
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MERLIN [12] - One-Shot Navigation
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MERLIN [12] - One-Shot Navigation

31



MERLIN [12] - One-Shot Navigation

32



MERLIN [12] - Latent Learning
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MERLIN [12] - Lesion Studies
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MERLIN [12] - Necessity of End-to-End Learning
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Theme Credit

Get the source of this theme and the demo presentation from

github.com/matze/mtheme

The theme itself is licensed under a Creative Commons
Attribution-ShareAlike 4.0 International License.

cba

42

github.com/matze/mtheme
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

