Fundamental Bounds on Learning Performance in Neural Circuits [10]

Authored by Raman, Rotondo \& O'Leary
Presented by Rylan Schaeffer
November 22, 2019

Motivation

- Three weeks ago, Mikail discussed Stable Memory with Unstable Synapses [11]

Motivation

- Three weeks ago, Mikail discussed Stable Memory with Unstable Synapses [11]
- Size and connectome of biological circuit change during learning

Motivation

- Three weeks ago, Mikail discussed Stable Memory with Unstable Synapses [11]
- Size and connectome of biological circuit change during learning
- Synapses in biological networks lack persistence, undergoing significant turnover [3, 9, 8], with magnitude rivaling Hebbian plasticity [5]

Motivation

- Three weeks ago, Mikail discussed Stable Memory with Unstable Synapses [11]
- Size and connectome of biological circuit change during learning
- Synapses in biological networks lack persistence, undergoing significant turnover [3, 9, 8], with magnitude rivaling Hebbian plasticity [5]
- Across species and regions, neurons frequently make multiple synaptic connections to same postsynaptic neuron $[1,2,4,6]$

Motivation

- Three weeks ago, Mikail discussed Stable Memory with Unstable Synapses [11]
- Size and connectome of biological circuit change during learning
- Synapses in biological networks lack persistence, undergoing significant turnover [3, 9, 8], with magnitude rivaling Hebbian plasticity [5]
- Across species and regions, neurons frequently make multiple synaptic connections to same postsynaptic neuron $[1,2,4,6]$
- What is the role of these processes? What (dis)advantages do these phenomena confer on biological circuits? [7]

Overview

- How does increasing neurons and/or adding redundant synapses affect learning?

Overview

- How does increasing neurons and/or adding redundant synapses affect learning?
- Consider gradient descent on error function, where weight change is comprised of three components: (a) task-specific gradient, (b) task-independent and (c) random noise

Overview

- How does increasing neurons and/or adding redundant synapses affect learning?
- Consider gradient descent on error function, where weight change is comprised of three components: (a) task-specific gradient, (b) task-independent and (c) random noise
- Rate of error reduction depends on interaction between gradient and Hessian

Overview

- How does increasing neurons and/or adding redundant synapses affect learning?
- Consider gradient descent on error function, where weight change is comprised of three components: (a) task-specific gradient, (b) task-independent and (c) random noise
- Rate of error reduction depends on interaction between gradient and Hessian
- For a given task, there is an optimal network size that maximizes rate of error reduction

Overview

- How does increasing neurons and/or adding redundant synapses affect learning?
- Consider gradient descent on error function, where weight change is comprised of three components: (a) task-specific gradient, (b) task-independent and (c) random noise
- Rate of error reduction depends on interaction between gradient and Hessian
- For a given task, there is an optimal network size that maximizes rate of error reduction
- Below optimal size, increasing network size causes network to learn faster by minimizing effect of curvature

Model

- Synaptic weights $w(t) \in \mathbb{R}^{n}$

Model

- Synaptic weights $w(t) \in \mathbb{R}^{n}$
- (Noisy) error function: $F[w(t)]$

Model

- Synaptic weights $w(t) \in \mathbb{R}^{n}$
- (Noisy) error function: $F[w(t)]$
- Consider network receives error feedback at $t=0$, but no additional feedback till time $t=T$

Model

- Synaptic weights $w(t) \in \mathbb{R}^{n}$
- (Noisy) error function: $F[w(t)]$
- Consider network receives error feedback at $t=0$, but no additional feedback till time $t=T$
- Define "learning rate" k over interval $t \in[0, T]$:

$$
F[w(T)]=(1-k T) F[w(0)]
$$

Model

- Synaptic weights $w(t) \in \mathbb{R}^{n}$
- (Noisy) error function: $F[w(t)]$
- Consider network receives error feedback at $t=0$, but no additional feedback till time $t=T$
- Define "learning rate" k over interval $t \in[0, T]$:

$$
F[w(T)]=(1-k T) F[w(0)]
$$

- Goal: maximize k to learn!

Model

- Synaptic weights $w(t) \in \mathbb{R}^{n}$
- (Noisy) error function: $F[w(t)]$
- Consider network receives error feedback at $t=0$, but no additional feedback till time $t=T$
- Define "learning rate" k over interval $t \in[0, T]$:

$$
F[w(T)]=(1-k T) F[w(0)]
$$

- Goal: maximize k to learn!
- Notation: cdot denotes normalized vector

Error Reduction Depends on Gradient, Hessian

How do gradient, Hessian affect the "learning rate" k ?

$$
F[w(T)]=[1-k T] F[w(0)]
$$

Error Reduction Depends on Gradient, Hessian

How do gradient, Hessian affect the "learning rate" k ?

$$
\begin{aligned}
F[w(T)] & =[1-k T] F[w(0)] \\
-k T F[w(0)] & =F[w(T)]-F[w(0)]
\end{aligned}
$$

Error Reduction Depends on Gradient, Hessian

How do gradient, Hessian affect the "learning rate" k ?

$$
\begin{aligned}
F[w(T)] & =[1-k T] F[w(0)] \\
-k T F[w(0)] & =F[w(T)]-F[w(0)] \\
& =\int_{t=0}^{T} d t \frac{d}{d t} F[w(t)]
\end{aligned}
$$

Error Reduction Depends on Gradient, Hessian

How do gradient, Hessian affect the "learning rate" k ?

$$
\begin{aligned}
F[w(T)] & =[1-k T] F[w(0)] \\
-k T F[w(0)] & =F[w(T)]-F[w(0)] \\
& =\int_{t=0}^{T} d t \frac{d}{d t} F[w(t)] \\
& =T\left\langle\nabla_{w} F[w(t)]^{T} \frac{d w}{d t}\right\rangle_{t \sim \operatorname{Unif}(0, T)}
\end{aligned}
$$

Error Reduction Depends on Gradient, Hessian

How do gradient, Hessian affect the "learning rate" k ?

$$
\begin{aligned}
F[w(T)] & =[1-k T] F[w(0)] \\
-k T F[w(0)] & =F[w(T)]-F[w(0)] \\
& =\int_{t=0}^{T} d t \frac{d}{d t} F[w(t)] \\
& =T\left\langle\nabla_{w} F[w(t)]^{T} \frac{d w}{d t}\right\rangle_{t \sim \operatorname{Unif}(0, T)}
\end{aligned}
$$

Define $\dot{w}_{T}=\frac{w(T)-w(0)}{T}$ and Taylor-series expand around $F[w(0)]$

Error Reduction Depends on Gradient, Hessian

How do gradient, Hessian affect the "learning rate" k ?

$$
\begin{aligned}
F[w(T)] & =[1-k T] F[w(0)] \\
-k T F[w(0)] & =F[w(T)]-F[w(0)] \\
& =\int_{t=0}^{T} d t \frac{d}{d t} F[w(t)] \\
& =T\left\langle\nabla_{w} F[w(t)]^{T} \frac{d w}{d t}\right\rangle_{t \sim \operatorname{Unif}(0, T)}
\end{aligned}
$$

Define $\dot{w}_{T}=\frac{w(T)-w(0)}{T}$ and Taylor-series expand around $F[w(0)]$

$$
-k T F[w(0)]=T \nabla_{w} F[w(t)]^{T} \dot{w}_{T}+\frac{1}{2} T^{2} \dot{w}_{T}^{T} \nabla_{w}^{2} F[w(0)] \dot{w}_{T}+O\left(T^{3}\right)
$$

Error Reduction Depends on Gradient, Hessian

How do gradient, Hessian affect the "learning rate" k?

$$
\begin{aligned}
F[w(T)] & =[1-k T] F[w(0)] \\
-k T F[w(0)] & =F[w(T)]-F[w(0)] \\
& =\int_{t=0}^{T} d t \frac{d}{d t} F[w(t)] \\
& =T\left\langle\nabla_{w} F[w(t)]^{T} \frac{d w}{d t}\right\rangle_{t \sim \operatorname{Unif}(0, T)}
\end{aligned}
$$

Define $\dot{w}_{T}=\frac{w(T)-w(0)}{T}$ and Taylor-series expand around $F[w(0)]$

$$
-k T F[w(0)]=T \nabla_{w} F[w(t)]^{T} \dot{w}_{T}+\frac{1}{2} T^{2} \dot{w}_{T}^{T} \nabla_{w}^{2} F[w(0)] \dot{w}_{T}+O\left(T^{3}\right)
$$

$$
k \approx-\frac{\|\nabla F[w(0)]\|_{2}}{F[w(0)]}\left[\dot{w}_{T}^{T} \nabla \hat{F}[w(0)]+\frac{T\left\|\dot{w}_{T}\right\|_{2}^{2}}{2\|\nabla F[w(0)]\|_{2}} \dot{\hat{w}}_{T}^{T} \nabla^{2} F[w(0)] \dot{\hat{w}}_{T}\right]
$$

Error Reduction Depends on Gradient, Hessian

$$
k \approx-\frac{\|\nabla F[w(0)]\|_{2}}{F[w(0)]}\left[\dot{w}_{T}^{T} \nabla \hat{F}[w(0)]+\frac{T\left\|\dot{w}_{T}\right\|_{2}^{2}}{2\|\nabla F[w(0)]\|_{2}} \dot{\hat{w}}_{T}^{T} \nabla^{2} F[w(0)] \dot{\hat{w}}_{T}\right]
$$

Error Reduction Depends on Gradient, Hessian

$$
k \approx-\frac{\|\nabla F[w(0)]\|_{2}}{F[w(0)]}\left[\dot{w}_{T}^{T} \nabla \hat{F}[w(0)]+\frac{T\left\|\dot{w}_{T}\right\|_{2}^{2}}{2\|\nabla F[w(0)]\|_{2}} \dot{\hat{w}}_{T}^{T} \nabla^{2} F[w(0)] \dot{\hat{w}}_{T}\right]
$$

Curvature competes with gradient to accelerate, slow or reverse learning. Fig 3A:

A

Model (Continued)

- Suppose weight change comprised of 3 components:

Model (Continued)

- Suppose weight change comprised of 3 components:
- "Task relevant plasticity" (direction of error gradient): $\nabla_{w} \hat{F}[w(0)]$

Model (Continued)

- Suppose weight change comprised of 3 components:
- "Task relevant plasticity" (direction of error gradient): $\nabla_{w} \hat{F}[w(0)]$
- "Task irrelevant plasticity" e.g. homeostatic plasticity, learning on other tasks: \hat{n}_{2}

Model (Continued)

- Suppose weight change comprised of 3 components:
- "Task relevant plasticity" (direction of error gradient): $\nabla_{w} \hat{F}[w(0)]$
- "Task irrelevant plasticity" e.g. homeostatic plasticity, learning on other tasks: \hat{n}_{2}
- "Synaptic Noise" i.e. Additive, iid white noise at each synapse: \hat{n}_{3}

Model (Continued)

- Suppose weight change comprised of 3 components:
- "Task relevant plasticity" (direction of error gradient): $\nabla_{w} \hat{F}[w(0)]$
- "Task irrelevant plasticity" e.g. homeostatic plasticity, learning on other tasks: \hat{n}_{2}
- "Synaptic Noise" i.e. Additive, iid white noise at each synapse: \hat{n}_{3}
- Assume network has no second-order information!

Model (Continued)

- Suppose weight change comprised of 3 components:
- "Task relevant plasticity" (direction of error gradient): $\nabla_{w} \hat{F}[w(0)]$
- "Task irrelevant plasticity" e.g. homeostatic plasticity, learning on other tasks: \hat{n}_{2}
- "Synaptic Noise" i.e. Additive, iid white noise at each synapse: \hat{n}_{3}
- Assume network has no second-order information!
- Writing the weight change:

$$
\dot{w}_{T}=-\gamma_{1} \nabla \hat{F}[w(0)]+\gamma_{2} \hat{n}_{2}+\gamma_{3} \sqrt{\frac{N}{T}} \hat{n}_{3}
$$

Model (Continued)

$$
\dot{w}_{T}=-\gamma_{1} \nabla \hat{F}[w(0)]+\gamma_{2} \hat{n}_{2}+\gamma_{3} \sqrt{\frac{N}{T}} \hat{n}_{3}
$$

B

Fig 3. Synaptic noise not pictured!

Model (Continued)

$$
\dot{w}_{T}=-\gamma_{1} \nabla \hat{F}[w(0)]+\gamma_{2} \hat{n}_{2}+\gamma_{3} \sqrt{\frac{N}{T}} \hat{n}_{3}
$$

B

Fig 3. Synaptic noise not pictured! How does each factor affect k ?

Weight Change Effect on Learning Rate

$$
k \approx-\frac{\|\nabla F\|_{2}}{F}\left[\dot{w}_{T}^{T} \nabla \hat{F}+T \frac{\left\|\dot{w}_{T}\right\|_{2}^{2}}{2\|\nabla F\|_{2}} \dot{\hat{w}}_{T}^{T} \nabla^{2} F \dot{\hat{w}}_{T}\right]
$$

Weight Change Effect on Learning Rate

$$
k \approx-\frac{\|\nabla F\|_{2}}{F}\left[\dot{w}_{T}^{T} \nabla \hat{F}+T \frac{\left\|\dot{w}_{T}\right\|_{2}^{2}}{2\|\nabla F\|_{2}} \dot{\hat{w}}_{T}^{T} \nabla^{2} F \dot{\hat{w}}_{T}\right]
$$

Assume (1) $n_{2}, n_{3}, \nabla F$ uncorrelated; (2) n_{2}, n_{3} independent from $\nabla^{2} F[w]$ i.e. $\left\langle n_{i}^{T} \nabla^{2} F n_{i}\right\rangle_{\hat{n}_{2}, \hat{c}_{3}}=\frac{\operatorname{Tr}\left(\nabla^{2} F\right)}{N}$.

Weight Change Effect on Learning Rate

$$
k \approx-\frac{\|\nabla F\|_{2}}{F}\left[\dot{w}_{T}^{T} \nabla \hat{F}+T \frac{\left\|\dot{w}_{T}\right\|_{2}^{2}}{2\|\nabla F\|_{2}} \dot{\hat{w}}_{T}^{T} \nabla^{2} F \dot{\hat{w}}_{T}\right]
$$

Assume (1) $n_{2}, n_{3}, \nabla F$ uncorrelated; (2) n_{2}, n_{3} independent from $\nabla^{2} F[w]$ i.e. $\left\langle n_{i}^{T} \nabla^{2} F n_{i}\right\rangle_{\hat{n}_{2}, \hat{n}_{3}}=\frac{\operatorname{Tr}\left(\nabla^{2} F\right)}{N}$.
$\langle\bullet\rangle_{\hat{n}_{2}, \hat{n}_{3}}$

Weight Change Effect on Learning Rate

$$
k \approx-\frac{\|\nabla F\|_{2}}{F}\left[\dot{w}_{T}^{T} \nabla \hat{F}+T \frac{\left\|\dot{w}_{T}\right\|_{2}^{2}}{2\|\nabla F\|_{2}} \dot{\hat{w}}_{T}^{T} \nabla^{2} F \dot{\hat{w}}_{T}\right]
$$

Assume (1) $n_{2}, n_{3}, \nabla F$ uncorrelated; (2) n_{2}, n_{3} independent from $\nabla^{2} F[w]$ i.e. $\left\langle n_{i}^{T} \nabla^{2} F n_{i}\right\rangle_{\hat{n}_{2}, \hat{n}_{3}}=\frac{\operatorname{Tr}\left(\nabla^{2} F\right)}{N}$.

$$
\langle\bullet\rangle_{\hat{n}_{2}, \hat{n}_{3}}=\left(-\gamma_{1} \nabla \hat{F}+\gamma_{2} \hat{n}_{2}+\gamma_{3} \sqrt{\frac{N}{T}} \hat{n}_{3}\right)^{T} \nabla \hat{F}
$$

Weight Change Effect on Learning Rate

$$
k \approx-\frac{\|\nabla F\|_{2}}{F}\left[\dot{w}_{T}^{T} \nabla \hat{F}+T \frac{\left\|\dot{w}_{T}\right\|_{2}^{2}}{2\|\nabla F\|_{2}} \dot{\hat{w}}_{T}^{T} \nabla^{2} F \dot{\hat{w}}_{T}\right]
$$

Assume (1) $n_{2}, n_{3}, \nabla F$ uncorrelated; (2) n_{2}, n_{3} independent from $\nabla^{2} F[w]$ i.e. $\left\langle n_{i}^{T} \nabla^{2} F n_{i}\right\rangle_{\hat{n}_{2}, \hat{n}_{3}}=\frac{\operatorname{Tr}\left(\nabla^{2} F\right)}{N}$.

$$
\begin{aligned}
\langle\bullet\rangle_{\hat{n}_{2}, \hat{n}_{3}} & =\left(-\gamma_{1} \nabla \hat{F}+\gamma_{2} \hat{n}_{2}+\gamma_{3} \sqrt{\frac{N}{T}} \hat{n}_{3}\right)^{T} \nabla \hat{F} \\
& =-\gamma_{1}+0+0
\end{aligned}
$$

Weight Change Effect on Learning Rate

$$
k \approx-\frac{\|\nabla F\|_{2}}{F}\left[\dot{w}_{T}^{T} \nabla \hat{F}+T \frac{\left\|\dot{w}_{T}\right\|_{2}^{2}}{2\|\nabla F\|_{2}} \dot{\hat{w}}_{T}^{T} \nabla^{2} F \dot{\hat{w}}_{T}\right]
$$

Assume (1) $n_{2}, n_{3}, \nabla F$ uncorrelated; (2) n_{2}, n_{3} independent from $\nabla^{2} F[w]$ i.e. $\left\langle n_{i}^{T} \nabla^{2} F n_{i}\right\rangle_{\hat{n}_{2}, \hat{n}_{3}}=\frac{\operatorname{Tr}\left(\nabla^{2} F\right)}{N}$.

$$
\begin{aligned}
\langle\bullet\rangle_{\hat{n}_{2}, \hat{n}_{3}} & =\left(-\gamma_{1} \nabla \hat{F}+\gamma_{2} \hat{n}_{2}+\gamma_{3} \sqrt{\frac{N}{T}} \hat{n}_{3}\right)^{T} \nabla \hat{F} \\
& =-\gamma_{1}+0+0
\end{aligned}
$$

$\langle\bullet\rangle_{\hat{n}_{2}, \hat{n}_{3}}$

Weight Change Effect on Learning Rate

$$
k \approx-\frac{\|\nabla F\|_{2}}{F}\left[\dot{w}_{T}^{T} \nabla \hat{F}+T \frac{\left\|\dot{w}_{T}\right\|_{2}^{2}}{2\|\nabla F\|_{2}} \dot{\hat{w}}_{T}^{T} \nabla^{2} F \dot{\hat{w}}_{T}\right]
$$

Assume (1) $n_{2}, n_{3}, \nabla F$ uncorrelated; (2) n_{2}, n_{3} independent from $\nabla^{2} F[w]$ i.e. $\left\langle n_{i}^{T} \nabla^{2} F n_{i}\right\rangle_{\hat{n}_{2}, \hat{n}_{3}}=\frac{\operatorname{Tr}\left(\nabla^{2} F\right)}{N}$.

$$
\begin{aligned}
\langle\bullet\rangle_{\hat{n}_{2}, \hat{n}_{3}} & =\left(-\gamma_{1} \nabla \hat{F}+\gamma_{2} \hat{n}_{2}+\gamma_{3} \sqrt{\left.\frac{N}{T} \hat{n}_{3}\right)^{T} \nabla \hat{F}}\right. \\
& =-\gamma_{1}+0+0 \\
\langle\bullet\rangle_{\hat{n}_{2}, \hat{n}_{3}} & =\gamma_{1}^{2} \nabla \hat{F}^{T} \nabla^{2} F \nabla \hat{F}+\frac{\gamma_{2}^{2} \hat{n}_{2} \nabla^{2} F \hat{n}_{2}+\gamma_{3}^{2} \hat{n}_{3} \nabla^{2} F \hat{n}_{3}}{2\|\nabla F\|_{2}}
\end{aligned}
$$

Weight Change Effect on Learning Rate

$$
k \approx-\frac{\|\nabla F\|_{2}}{F}\left[\dot{w}_{T}^{T} \nabla \hat{F}+T \frac{\left\|\dot{w}_{T}\right\|_{2}^{2}}{2\|\nabla F\|_{2}} \dot{\hat{w}}_{T}^{T} \nabla^{2} F \dot{\hat{w}}_{T}\right]
$$

Assume (1) $n_{2}, n_{3}, \nabla F$ uncorrelated; (2) n_{2}, n_{3} independent from $\nabla^{2} F[w]$ i.e. $\left\langle n_{i}^{T} \nabla^{2} F n_{i}\right\rangle_{\hat{n}_{2}, \hat{n}_{3}}=\frac{\operatorname{Tr}\left(\nabla^{2} F\right)}{N}$.

$$
\begin{aligned}
\langle\bullet\rangle_{\hat{n}_{2}, \hat{n}_{3}} & =\left(-\gamma_{1} \nabla \hat{F}+\gamma_{2} \hat{n}_{2}+\gamma_{3} \sqrt{\frac{N}{T}} \hat{n}_{3}\right)^{T} \nabla \hat{F} \\
& =-\gamma_{1}+0+0 \\
\langle\bullet\rangle_{\hat{n}_{2}, \hat{n}_{3}} & =\gamma_{1}^{2} \nabla \hat{F}^{T} \nabla^{2} F \nabla \hat{F}+\frac{\gamma_{2}^{2} \hat{n}_{2} \nabla^{2} F \hat{n}_{2}+\gamma_{3}^{2} \hat{n}_{3} \nabla^{2} F \hat{n}_{3}}{2\|\nabla F\|_{2}} \\
& =\gamma_{1}^{2} \nabla \hat{F}^{T} \nabla^{2} F \nabla \hat{F}+\frac{\operatorname{Tr}\left(\nabla^{2} F\right)}{2\|\nabla F\|_{2}}\left[\frac{\gamma_{2}^{2}}{N}+\frac{\gamma_{3}^{2}}{T}\right]
\end{aligned}
$$

Weight Change Effect on Learning Rate

$\langle k\rangle_{\hat{n}_{2}, \hat{n}_{3}} \approx-\frac{-\|\nabla F\|_{2}}{F}\left[-\gamma_{1}+T \gamma_{1}^{2} \nabla \hat{F}^{T} \nabla^{2} F \nabla \hat{F}+T \frac{\operatorname{Tr}\left(\nabla^{2} F\right)}{2\|\nabla F\|_{2}^{2}}\left[\frac{\gamma_{2}^{2}}{N}+\frac{\gamma_{3}^{2}}{T}\right]\right]$

- Authors call $G_{F}\left[\dot{\hat{w}}_{T}\right]=\frac{\dot{\dot{\dot{\omega}}} \|_{2}^{2}}{}$ the "local task difficulty"

Weight Change Effect on Learning Rate

$\langle k\rangle_{\hat{n}_{2}, \hat{h}_{3}} \approx-\frac{-\|\nabla F\|_{2}}{F}\left[-\gamma_{1}+T \gamma_{1}^{2} \nabla \hat{F}^{T} \nabla^{2} F \nabla \hat{F}+T \frac{\operatorname{Tr}\left(\nabla^{2} F\right)}{2\|\nabla F\|_{2}^{2}}\left[\frac{\gamma_{2}^{2}}{N}+\frac{\gamma_{3}^{2}}{T}\right]\right]$

- Authors call $G_{F}\left[\dot{\hat{w}}_{T}\right]=\frac{\text { - }}{\left\|\dot{\dot{T}^{2}}\right\|_{2}^{2}}$ the "local task difficulty"
- Authors argue that $\operatorname{sign}\left(G_{F}\left[\dot{\hat{w}}_{T}\right]\right)=\operatorname{sign}\left(\operatorname{Tr}\left(\nabla^{2} F\right)\right)>0$. Why?

Weight Change Effect on Learning Rate

$\langle k\rangle_{\hat{n}_{2}, \hat{h}_{3}} \approx-\frac{-\|\nabla F\|_{2}}{F}\left[-\gamma_{1}+T \gamma_{1}^{2} \nabla \hat{F}^{T} \nabla^{2} F \nabla \hat{F}+T \frac{\operatorname{Tr}\left(\nabla^{2} F\right)}{2\|\nabla F\|_{2}^{2}}\left[\frac{\gamma_{2}^{2}}{N}+\frac{\gamma_{3}^{2}}{T}\right]\right]$

- Authors argue that $\operatorname{sign}\left(G_{F}\left[\dot{\hat{w}}_{T}\right]\right)=\operatorname{sign}\left(\operatorname{Tr}\left(\nabla^{2} F\right)\right)>0$. Why?
- Learning occurs when:

$$
\langle k\rangle_{\hat{n}_{2}, \hat{n}_{3}}>0 \Rightarrow G_{F}\left[\dot{\hat{w}}_{T}\right]<\frac{\gamma_{1}}{T\left(\gamma_{1}^{2}+\gamma_{2}^{2}+\gamma_{3}^{2} \frac{N}{T}\right)}
$$

Weight Change Effect on Learning Rate

$\langle k\rangle_{\hat{n}_{2}, \hat{h}_{3}} \approx-\frac{-\|\nabla F\|_{2}}{F}\left[-\gamma_{1}+T \gamma_{1}^{2} \nabla \hat{F}^{T} \nabla^{2} F \nabla \hat{F}+T \frac{\operatorname{Tr}\left(\nabla^{2} F\right)}{2\|\nabla F\|_{2}^{2}}\left[\frac{\gamma_{2}^{2}}{N}+\frac{\gamma_{3}^{2}}{T}\right]\right]$

- Authors call $G_{F}\left[\dot{\hat{w}}_{T}\right]=\frac{\text { - }}{\left\|\dot{\dot{T}^{2}}\right\|_{2}^{2}}$ the "local task difficulty"
- Authors argue that $\operatorname{sign}\left(G_{F}\left[\dot{\hat{w}}_{T}\right]\right)=\operatorname{sign}\left(\operatorname{Tr}\left(\nabla^{2} F\right)\right)>0$. Why?
- Learning occurs when:

$$
\langle k\rangle_{\hat{n}_{2}, \hat{n}_{3}}>0 \Rightarrow G_{F}\left[\dot{\hat{w}}_{T}\right]<\frac{\gamma_{1}}{T\left(\gamma_{1}^{2}+\gamma_{2}^{2}+\gamma_{3}^{2} \frac{N}{T}\right)}
$$

- There exists optimal size N^{*} that maximizes $\langle k\rangle_{\hat{n}_{2}, \hat{h}_{3}}$

Local Task Difficulty

Local Task Difficulty

Top: Low intrinsic noise $\left(\gamma_{3}=0.05\right)$. Bottom: High intrinsic noise $\left(\gamma_{3}=0.1\right)$.

B
linear network
nonlinear network

Optimal Linear Network Size

- Student-teacher framework with $W \in \mathbb{R}^{o \times i}$:

$$
y^{*}=W^{*} x \quad y=W x \quad F(W)=\frac{1}{2}\left\|y^{*}-y\right\|_{2}^{2}
$$

Optimal Linear Network Size

- Student-teacher framework with $W \in \mathbb{R}^{o \times i}$:

$$
y^{*}=W^{*} x \quad y=W x \quad F(W)=\frac{1}{2}\left\|y^{*}-y\right\|_{2}^{2}
$$

- Choose

Optimal Linear Network Size

- Student-teacher framework with $W \in \mathbb{R}^{o \times i}$:

$$
y^{*}=W^{*} x \quad y=W x \quad F(W)=\frac{1}{2}\left\|y^{*}-y\right\|_{2}^{2}
$$

- Choose
- $c_{1}, c_{2}>1$

Optimal Linear Network Size

- Student-teacher framework with $W \in \mathbb{R}^{0 \times i}$:

$$
y^{*}=W^{*} x \quad y=W x \quad F(W)=\frac{1}{2}\left\|y^{*}-y\right\|_{2}^{2}
$$

- Choose
- $c_{1}, c_{2}>1$
- Two semi-orthogonal matrices $B \in \mathbb{R}^{c_{1} i \times i}, D \in \mathbb{R}^{c_{2} o \times o}$

Optimal Linear Network Size

- Student-teacher framework with $W \in \mathbb{R}^{0 \times i}$:

$$
y^{*}=W^{*} x \quad y=W x \quad F(W)=\frac{1}{2}\left\|y^{*}-y\right\|_{2}^{2}
$$

- Choose
- $c_{1}, c_{2}>1$
- Two semi-orthogonal matrices $B \in \mathbb{R}^{c_{1} i \times i}, D \in \mathbb{R}^{c_{2} o \times o}$
- Random $W^{\prime} \in \mathbb{R}^{c_{2} o \times c_{1} i}$ such that $W=D^{T} W^{\prime} B$

Optimal Linear Network Size

- Student-teacher framework with $W \in \mathbb{R}^{o \times i}$:

$$
y^{*}=W^{*} x \quad y=W x \quad F(W)=\frac{1}{2}\left\|y^{*}-y\right\|_{2}^{2}
$$

- Choose
- $c_{1}, c_{2}>1$
- Two semi-orthogonal matrices $B \in \mathbb{R}^{c_{1} i \times i}, D \in \mathbb{R}^{c_{2} o \times o}$
- Random $W^{\prime} \in \mathbb{R}^{c_{2} o \times c_{1} i}$ such that $W=D^{T} W^{\prime} B$
- Interpretation: add neurons or redundant synapses

Optimal Linear Network Size

- Student-teacher framework with $W \in \mathbb{R}^{o \times i}$:

$$
y^{*}=W^{*} x \quad y=W x \quad F(W)=\frac{1}{2}\left\|y^{*}-y\right\|_{2}^{2}
$$

- Choose
- $c_{1}, c_{2}>1$
- Two semi-orthogonal matrices $B \in \mathbb{R}^{c_{1} \times i}, D \in \mathbb{R}^{c_{2} 0 \times o}$
- Random $W^{\prime} \in \mathbb{R}^{c_{2} o \times c_{1} i}$ such that $W=D^{T} W^{\prime} B$
- Interpretation: add neurons or redundant synapses
- Replace W with $D^{T} W^{\prime} B$

$$
\begin{aligned}
y & =D^{T} W^{\prime} B x \\
F\left[W^{\prime}\right] & =F[W] \\
\left\|F\left[W^{\prime}\right]\right\|_{F}^{2} & =\|F[W]\|_{F}^{2} \\
\operatorname{Tr}\left(\nabla^{2} F\left[W^{\prime}\right]\right) & =c_{2} \operatorname{Tr}\left(\nabla^{2} F[W]\right)
\end{aligned}
$$

Optimal Linear Network Size

$$
y=D^{\top} W^{\prime} B x \Longleftrightarrow D y=W^{\prime} B x
$$

A
linear network expansion

$$
\mathbf{y}=\mathbf{W u}
$$

$$
\mathbf{D} \mathbf{y}=\left(\mathbf{W}^{\prime} \mathbf{B}\right) \mathbf{u}
$$

inputs outputs

Optimal Linear Network Size

- Define $N=i o, \tilde{N}=c_{1} c_{2} i o$

Optimal Linear Network Size

- Define $N=i o, N=c_{1} c_{2} i o$
- Compare learning rate $k(N)$ vs $k(\tilde{N})$:

$$
\langle k(N)\rangle \approx \frac{-\|\nabla F\|_{2}}{F}\left[-\gamma_{1}+T \gamma_{1}^{2} \nabla \hat{F}^{T} \nabla^{2} F \nabla \hat{F}+T \frac{\operatorname{Tr}\left(\nabla^{2} F\right)}{2\|\nabla F\|_{2}^{2}}\left[\frac{\gamma_{2}^{2}}{N}+\frac{\gamma_{3}^{2}}{T}\right]\right]
$$

Optimal Linear Network Size

- Define $N=i o, \tilde{N}=c_{1} c_{2} i o$
- Compare learning rate $k(N)$ vs $k(\tilde{N})$:

$$
\langle k(N)\rangle \approx \frac{-\|\nabla F\|_{2}}{F}\left[-\gamma_{1}+T \gamma_{1}^{2} \nabla \hat{F}^{T} \nabla^{2} F \nabla \hat{F}+T \frac{\operatorname{Tr}\left(\nabla^{2} F\right)}{2\|\nabla F\|_{2}^{2}}\left[\frac{\gamma_{2}^{2}}{N}+\frac{\gamma_{3}^{2}}{T}\right]\right]
$$

- If $\nabla F\left[W^{\prime}\right]$ projects equally onto Hessian eigenvectors:

$$
\nabla \hat{F}\left[W^{\prime}\right]^{T} \nabla^{2} F\left[W^{\prime}\right] \nabla \hat{F}\left[W^{\prime}\right] \approx c_{2} \nabla \hat{F}[W]^{T} \nabla^{2} F[W] \nabla \hat{F}[W]
$$

Optimal Linear Network Size

- Define $N=i o, \tilde{N}=c_{1} c_{2} i o$
- Compare learning rate $k(N)$ vs $k(\tilde{N})$:

$$
\langle k(N)\rangle \approx \frac{-\|\nabla F\|_{2}}{F}\left[-\gamma_{1}+T \gamma_{1}^{2} \nabla \hat{F}^{T} \nabla^{2} F \nabla \hat{F}+T \frac{\operatorname{Tr}\left(\nabla^{2} F\right)}{2\|\nabla F\|_{2}^{2}}\left[\frac{\gamma_{2}^{2}}{N}+\frac{\gamma_{3}^{2}}{T}\right]\right]
$$

- If $\nabla F\left[W^{\prime}\right]$ projects equally onto Hessian eigenvectors:

$$
\nabla \hat{F}\left[W^{\prime}\right]^{T} \nabla^{2} F\left[W^{\prime}\right] \nabla \hat{F}\left[W^{\prime}\right] \approx c_{2} \nabla \hat{F}[W]^{T} \nabla^{2} F[W] \nabla \hat{F}[W]
$$

- Previously:

$$
\frac{\operatorname{Tr}\left(\nabla^{2} F\left[W^{\prime}\right]\right)}{2\left\|\nabla F\left[W^{\prime}\right]\right\|_{2}}=\frac{c_{2} \operatorname{Tr}\left(\nabla^{2} F[W]\right)}{2\|\nabla F[W]\|_{2}}
$$

Optimal Linear Network Size

- Define $N=i o, N=c_{1} c_{2} i o$
- Compare learning rate $k(N)$ vs $k(\tilde{N})$:

$$
\langle k(N)\rangle \approx \frac{-\|\nabla F\|_{2}}{F}\left[-\gamma_{1}+T \gamma_{1}^{2} \nabla \hat{F}^{T} \nabla^{2} F \nabla \hat{F}+T \frac{\operatorname{Tr}\left(\nabla^{2} F\right)}{2\|\nabla F\|_{2}^{2}}\left[\frac{\gamma_{2}^{2}}{N}+\frac{\gamma_{3}^{2}}{T}\right]\right]
$$

- If $\nabla F\left[W^{\prime}\right]$ projects equally onto Hessian eigenvectors:

$$
\nabla \hat{F}\left[W^{\prime}\right]^{T} \nabla^{2} F\left[W^{\prime}\right] \nabla \hat{F}\left[W^{\prime}\right] \approx c_{2} \nabla \hat{F}[W]^{T} \nabla^{2} F[W] \nabla \hat{F}[W]
$$

- Previously:

$$
\frac{\operatorname{Tr}\left(\nabla^{2} F\left[W^{\prime}\right]\right)}{2\left\|\nabla F\left[W^{\prime}\right]\right\|_{2}}=\frac{c_{2} \operatorname{Tr}\left(\nabla^{2} F[W]\right)}{2\|\nabla F[W]\|_{2}}
$$

- Thus:

$$
\langle k(\tilde{N})\rangle \approx \frac{-\|\nabla F\|_{2}}{F}\left[-\gamma_{1}+T c_{2} \gamma_{1}^{2} \nabla \hat{F}^{T} \nabla^{2} F \nabla \hat{F}+T c_{2} \frac{\operatorname{Tr}\left(\nabla^{2} F\right)}{2\|\nabla F\|_{2}^{2}}\left[\frac{\gamma_{2}^{2}}{\tilde{N}}+\frac{\gamma_{3}^{2}}{T}\right]\right.
$$

Optimal Linear Network Size

Find N^{*} that maximizes $k(\tilde{N})$:

$$
N^{*} \approx \frac{T \gamma_{2}^{2}}{\gamma_{3}^{2}}\left(1-\frac{\gamma_{1}^{2}}{\gamma_{2}^{2}}\right)
$$

If no task-irrelevant plasticity, $\gamma_{2}=0 \Rightarrow N^{*} \approx 0-\frac{T \gamma_{1}^{2}}{\gamma_{3}^{2}}<0 \Rightarrow$ optimal network size is negative?

Optimal Linear Network Size

Find N^{*} that maximizes $k(\tilde{N})$:

$$
\boldsymbol{N}^{*} \approx \frac{T \gamma_{2}^{2}}{\gamma_{3}^{2}}\left(1-\frac{\gamma_{1}^{2}}{\gamma_{2}^{2}}\right)
$$

If no task-irrelevant plasticity, $\gamma_{2}=0 \Rightarrow N^{*} \approx 0-\frac{T \gamma_{1}^{2}}{\gamma_{3}^{2}}<0 \Rightarrow$ optimal network size is negative?

Optimal Non-Linear Network Size

- Student-Teacher framework with logistic sigmoid activation functions:

$$
h^{(k)}=\sigma\left(W^{(k)} h^{k-1}\right)
$$

Optimal Non-Linear Network Size

- Student-Teacher framework with logistic sigmoid activation functions :

$$
h^{(k)}=\sigma\left(W^{(k)} h^{k-1}\right)
$$

- Replace W with larger W^{\prime}, with new synaptic weights initialized to zero

Optimal Non-Linear Network Size

- Student-Teacher framework with logistic sigmoid activation functions:

$$
h^{(k)}=\sigma\left(W^{(k)} h^{k-1}\right)
$$

- Replace W with larger W^{\prime}, with new synaptic weights initialized to zero
- Through some derivation I didn't have time to read:

$$
N^{*}=\frac{T \gamma_{2}^{2}}{\gamma_{3}^{2}}\left[\frac{\gamma_{1}^{2} N}{\gamma_{2}^{2} N^{*}}\right]
$$

Optimal Non-Linear Network Size

Takeaways

- Larger networks learn better, but
- Intrinsically noisy synapses eventually negate benefits of larger network size
- Experimental Prediction: Circuit size should be inversely proportional to per-synaptic rate of change
- Experimental Prediction: suppression of synaptic noise allows for larger circuit formation

Questions?

References i

T. M. Bartol Jr, C. Bromer, J. Kinney, M. A. Chirillo, J. N. Bourne, K. M. Harris, and T. J. Sejnowski.
Nanoconnectomic upper bound on the variability of synaptic plasticity.
Elife, 4:e10778, 2015.
E. B. Bloss, M. S. Cembrowski, B. Karsh, J. Colonell, R. D. Fetter, and N. Spruston.
Single excitatory axons form clustered synapses onto ca1 pyramidal cell dendrites.
Nature neuroscience, 21(3):353, 2018.

References if

围 C. Clopath, T. Bonhoeffer, M. Hübener, and T. Rose.
Variance and invariance of neuronal long-term representations.
Philosophical Transactions of the Royal Society B: Biological Sciences, 372(1715):20160161, 2017.

圊
S. Druckmann, L. Feng, B. Lee, C. Yook, T. Zhao, J. C.

Magee, and J. Kim.
Structured synaptic connectivity between hippocampal regions.
Neuron, 81(3):629-640, 2014.

國 R. Dvorkin and N. E. Ziv.
Relative contributions of specific activity histories and spontaneous processes to size remodeling of glutamatergic synapses.
PLoS biology, 14(10):e1002572, 2016.
围 K. Eichler, F. Li, A. Litwin-Kumar, Y. Park, I. Andrade, C. M.
Schneider-Mizell, T. Saumweber, A. Huser, C. Eschbach,
B. Gerber, et al.

The complete connectome of a learning and memory centre in an insect brain.
Nature, 548(7666):175, 2017.

References iv

D. Kappel, R. Legenstein, S. Habenschuss, M. Hsieh, and W. Maass.

A dynamic connectome supports the emergence of stable computational function of neural circuits through reward-based learning.
Eneuro, 5(2), 2018.
圊 Y. Loewenstein, U. Yanover, and S. Rumpel.
Predicting the dynamics of network connectivity in the neocortex.
Journal of Neuroscience, 35(36):12535-12544, 2015.

References

(R. Mongillo, S. Rumpel, and Y. Loewenstein. Intrinsic volatility of synaptic connections-a challenge to the synaptic trace theory of memory.
Current opinion in neurobiology, 46:7-13, 2017.
囲 D. V. Raman, A. P. Rotondo, and T. O'Leary.
Fundamental bounds on learning performance in neural circuits.
Proceedings of the National Academy of Sciences, 116(21):10537-10546, 2019.
L. Susman, N. Brenner, and O. Barak.

Stable memory with unstable synapses.
Nature communications, 10(1):1-9, 2019.

