Fundamental Bounds on Learning Performance in Neural Circuits [10]

Authored by Raman, Rotondo & O'Leary Presented by Rylan Schaeffer November 22, 2019 • Three weeks ago, Mikail discussed Stable Memory with Unstable Synapses [11]

- Three weeks ago, Mikail discussed Stable Memory with Unstable Synapses [11]
- Size and connectome of biological circuit change during learning

- Three weeks ago, Mikail discussed Stable Memory with Unstable Synapses [11]
- Size and connectome of biological circuit change during learning
- Synapses in biological networks lack persistence, undergoing significant turnover [3, 9, 8], with magnitude rivaling Hebbian plasticity [5]

- Three weeks ago, Mikail discussed Stable Memory with Unstable Synapses [11]
- Size and connectome of biological circuit change during learning
- Synapses in biological networks lack persistence, undergoing significant turnover [3, 9, 8], with magnitude rivaling Hebbian plasticity [5]
- Across species and regions, neurons frequently make multiple synaptic connections to same postsynaptic neuron [1, 2, 4, 6]

- Three weeks ago, Mikail discussed Stable Memory with Unstable Synapses [11]
- Size and connectome of biological circuit change during learning
- Synapses in biological networks lack persistence, undergoing significant turnover [3, 9, 8], with magnitude rivaling Hebbian plasticity [5]
- Across species and regions, neurons frequently make multiple synaptic connections to same postsynaptic neuron [1, 2, 4, 6]
- What is the role of these processes? What (dis)advantages do these phenomena confer on biological circuits? [7]

• How does increasing neurons and/or adding redundant synapses affect learning?

- How does increasing neurons and/or adding redundant synapses affect learning?
- Consider gradient descent on error function, where weight change is comprised of three components: (a) task-specific gradient, (b) task-independent and (c) random noise

- How does increasing neurons and/or adding redundant synapses affect learning?
- Consider gradient descent on error function, where weight change is comprised of three components: (a) task-specific gradient, (b) task-independent and (c) random noise
- Rate of error reduction depends on interaction between gradient and Hessian

- How does increasing neurons and/or adding redundant synapses affect learning?
- Consider gradient descent on error function, where weight change is comprised of three components: (a) task-specific gradient, (b) task-independent and (c) random noise
- Rate of error reduction depends on interaction between gradient and Hessian
- For a given task, there is an optimal network size that maximizes rate of error reduction

- How does increasing neurons and/or adding redundant synapses affect learning?
- Consider gradient descent on error function, where weight change is comprised of three components: (a) task-specific gradient, (b) task-independent and (c) random noise
- Rate of error reduction depends on interaction between gradient and Hessian
- For a given task, there is an optimal network size that maximizes rate of error reduction
- Below optimal size, increasing network size causes network to learn faster by minimizing effect of curvature

• Synaptic weights $w(t) \in \mathbb{R}^n$

- Synaptic weights $w(t) \in \mathbb{R}^n$
- (Noisy) error function: F[w(t)]

- Synaptic weights $w(t) \in \mathbb{R}^n$
- (Noisy) error function: F[w(t)]
- Consider network receives error feedback at t = 0, but no additional feedback till time t = T

- Synaptic weights $w(t) \in \mathbb{R}^n$
- (Noisy) error function: F[w(t)]
- Consider network receives error feedback at t = 0, but no additional feedback till time t = T
- Define "learning rate" k over interval $t \in [0, T]$:

$$F[w(T)] = (1 - kT)F[w(0)]$$

- Synaptic weights $w(t) \in \mathbb{R}^n$
- (Noisy) error function: F[w(t)]
- Consider network receives error feedback at t = 0, but no additional feedback till time t = T
- Define "learning rate" k over interval $t \in [0, T]$:

$$F[w(T)] = (1 - kT)F[w(0)]$$

• Goal: maximize k to learn!

- Synaptic weights $w(t) \in \mathbb{R}^n$
- (Noisy) error function: F[w(t)]
- Consider network receives error feedback at t = 0, but no additional feedback till time t = T
- Define "learning rate" k over interval $t \in [0, T]$:

$$F[w(T)] = (1 - kT)F[w(0)]$$

- Goal: maximize k to learn!
- Notation: cdot denotes normalized vector

How do gradient, Hessian affect the "learning rate" k? F[w(T)] = [1 - kT]F[w(0)]

How do gradient, Hessian affect the "learning rate" k?

$$F[w(T)] = [1 - kT]F[w(0)] - kTF[w(0)] = F[w(T)] - F[w(0)]$$

How do gradient, Hessian affect the "learning rate" k?

$$F[w(T)] = [1 - kT]F[w(0)]$$
$$- kTF[w(0)] = F[w(T)] - F[w(0)]$$
$$= \int_{t=0}^{T} dt \frac{d}{dt}F[w(t)]$$

How do gradient, Hessian affect the "learning rate" k?

$$F[w(T)] = [1 - kT]F[w(0)]$$

- kTF[w(0)] = F[w(T)] - F[w(0)]
= $\int_{t=0}^{T} dt \frac{d}{dt}F[w(t)]$
= $T \langle \nabla_{w}F[w(t)]^{T} \frac{dw}{dt} \rangle_{t \sim \text{Unif}(0,T)}$

How do gradient, Hessian affect the "learning rate" k?

$$F[w(T)] = [1 - kT]F[w(0)]$$

- kTF[w(0)] = F[w(T)] - F[w(0)]
= $\int_{t=0}^{T} dt \frac{d}{dt}F[w(t)]$
= $T \langle \nabla_{w}F[w(t)]^{T} \frac{dw}{dt} \rangle_{t \sim \text{Unif}(0,T)}$

Define $\dot{w}_T = \frac{w(T) - w(0)}{T}$ and Taylor-series expand around F[w(0)]

How do gradient, Hessian affect the "learning rate" k?

$$F[w(T)] = [1 - kT]F[w(0)]$$

- kTF[w(0)] = F[w(T)] - F[w(0)]
= $\int_{t=0}^{T} dt \frac{d}{dt}F[w(t)]$
= $T \langle \nabla_{w}F[w(t)]^{T} \frac{dw}{dt} \rangle_{t \sim \text{Unif}(0,T)}$

Define $\dot{w}_T = \frac{w(T) - w(0)}{T}$ and Taylor-series expand around F[w(0)]- $kTE[w(0)] = T\nabla E[w(t)]^T \dot{w}_T + \frac{1}{T}T^2 \dot{w}_T^T \nabla^2 E[w(0)]\dot{w}_T + O(T^3)$

$$-kTF[w(0)] = T\nabla_{w}F[w(t)]' \dot{w}_{T} + \frac{1}{2}T^{2}\dot{w}_{T}'\nabla_{w}^{2}F[w(0)]\dot{w}_{T} + O(T^{3})$$

How do gradient, Hessian affect the "learning rate" k?

$$F[w(T)] = [1 - kT]F[w(0)]$$

- kTF[w(0)] = F[w(T)] - F[w(0)]
=
$$\int_{t=0}^{T} dt \frac{d}{dt}F[w(t)]$$

= $T \langle \nabla_{w}F[w(t)]^{T} \frac{dw}{dt} \rangle_{t \sim \text{Unif}(0,T)}$

Define $\dot{w}_T = \frac{w(T) - w(0)}{T}$ and Taylor-series expand around F[w(0)]

$$-kTF[w(0)] = T\nabla_{w}F[w(t)]^{T}\dot{w}_{T} + \frac{1}{2}T^{2}\dot{w}_{T}^{T}\nabla_{w}^{2}F[w(0)]\dot{w}_{T} + O(T^{3})$$
$$k \approx -\frac{||\nabla F[w(0)]||_{2}}{F[w(0)]} \Big[\dot{w}_{T}^{T}\nabla\hat{F}[w(0)] + \frac{T||\dot{w}_{T}||_{2}^{2}}{2||\nabla F[w(0)]||_{2}}\dot{w}_{T}^{T}\nabla^{2}F[w(0)]\dot{w}_{T}\Big]$$

$$k \approx -\frac{||\nabla F[w(0)]||_2}{F[w(0)]} \Big[\dot{w}_T^T \nabla \hat{F}[w(0)] + \frac{T||\dot{w}_T||_2^2}{2||\nabla F[w(0)]||_2} \dot{\hat{w}}_T^T \nabla^2 F[w(0)] \dot{\hat{w}}_T \Big]$$

$$k \approx -\frac{||\nabla F[w(0)]||_2}{F[w(0)]} \Big[\dot{w}_T^T \nabla \hat{F}[w(0)] + \frac{T||\dot{w}_T||_2^2}{2||\nabla F[w(0)]||_2} \dot{w}_T^T \nabla^2 F[w(0)] \dot{w}_T \Big]$$

Curvature competes with gradient to accelerate, slow or reverse learning. Fig 3A:

• Suppose weight change comprised of 3 components:

- Suppose weight change comprised of 3 components:
- "Task relevant plasticity" (direction of error gradient): $\nabla_w \hat{F}[w(0)]$

- Suppose weight change comprised of 3 components:
- "Task relevant plasticity" (direction of error gradient): $\nabla_w \hat{F}[w(0)]$
- "Task irrelevant plasticity" e.g. homeostatic plasticity, learning on other tasks: \hat{n}_2

- Suppose weight change comprised of 3 components:
- "Task relevant plasticity" (direction of error gradient): $\nabla_w \hat{F}[w(0)]$
- "Task irrelevant plasticity" e.g. homeostatic plasticity, learning on other tasks: \hat{n}_2
- "Synaptic Noise" i.e. Additive, iid white noise at each synapse: \hat{n}_3

- Suppose weight change comprised of 3 components:
- "Task relevant plasticity" (direction of error gradient): $\nabla_w \hat{F}[w(0)]$
- "Task irrelevant plasticity" e.g. homeostatic plasticity, learning on other tasks: \hat{n}_2
- "Synaptic Noise" i.e. Additive, iid white noise at each synapse: \hat{n}_3
- Assume network has no second-order information!

- Suppose weight change comprised of 3 components:
- "Task relevant plasticity" (direction of error gradient): $\nabla_w \hat{F}[w(0)]$
- "Task irrelevant plasticity" e.g. homeostatic plasticity, learning on other tasks: n₂
- "Synaptic Noise" i.e. Additive, iid white noise at each synapse: \hat{n}_3
- Assume network has no second-order information!
- Writing the weight change:

$$\dot{w}_T = -\gamma_1 \nabla \hat{F}[w(0)] + \gamma_2 \hat{n}_2 + \gamma_3 \sqrt{\frac{N}{T}} \hat{n}_3$$

$$\dot{w}_T = -\gamma_1
abla \hat{F}[w(0)] + \gamma_2 \hat{n}_2 + \gamma_3 \sqrt{rac{N}{T}} \hat{n}_3$$

Fig 3. Synaptic noise not pictured!

$$\dot{w}_T = -\gamma_1
abla \hat{F}[w(0)] + \gamma_2 \hat{n}_2 + \gamma_3 \sqrt{rac{N}{T}} \hat{n}_3$$

Fig 3. Synaptic noise not pictured! How does each factor affect k?

Weight Change Effect on Learning Rate

$$k \approx -\frac{||\nabla F||_2}{F} \left[\dot{w}_T^T \nabla \hat{F} + T \frac{||\dot{w}_T||_2^2}{2||\nabla F||_2} \dot{w}_T^T \nabla^2 F \dot{w}_T \right]$$

Weight Change Effect on Learning Rate

$$k \approx -\frac{||\nabla F||_2}{F} \left[\dot{w}_T^T \nabla \hat{F} + T \frac{||\dot{w}_T||_2^2}{2||\nabla F||_2} \dot{w}_T^T \nabla^2 F \dot{w}_T \right]$$

Assume (1) $n_2, n_3, \nabla F$ uncorrelated; (2) n_2, n_3 independent from $\nabla^2 F[w]$ i.e. $\langle n_i^T \nabla^2 F n_i \rangle_{\hat{n}_2, \hat{n}_3} = \frac{\text{Tr}(\nabla^2 F)}{N}$.
$$k \approx -\frac{||\nabla F||_2}{F} \left[\dot{w}_T^T \nabla \hat{F} + T \frac{||\dot{w}_T||_2^2}{2||\nabla F||_2} \dot{w}_T^T \nabla^2 F \dot{w}_T \right]$$

$$k \approx -\frac{||\nabla F||_2}{F} \left[\dot{w}_T^T \nabla \hat{F} + T \frac{||\dot{w}_T||_2^2}{2||\nabla F||_2} \dot{w}_T^T \nabla^2 F \dot{w}_T \right]$$

$$\langle \bullet \rangle_{\hat{n}_2,\hat{n}_3} = (-\gamma_1 \nabla \hat{F} + \gamma_2 \hat{n}_2 + \gamma_3 \sqrt{\frac{N}{T}} \hat{n}_3)^T \nabla \hat{F}$$

$$k \approx -\frac{||\nabla F||_2}{F} \left[\dot{w}_T^T \nabla \hat{F} + T \frac{||\dot{w}_T||_2^2}{2||\nabla F||_2} \dot{w}_T^T \nabla^2 F \dot{w}_T \right]$$

$$\langle \bullet \rangle_{\hat{n}_2, \hat{n}_3} = (-\gamma_1 \nabla \hat{F} + \gamma_2 \hat{n}_2 + \gamma_3 \sqrt{\frac{N}{T}} \hat{n}_3)^T \nabla \hat{F}$$

= $-\gamma_1 + 0 + 0$

$$k \approx -\frac{||\nabla F||_2}{F} \left[\dot{w}_T^T \nabla \hat{F} + T \frac{||\dot{w}_T||_2^2}{2||\nabla F||_2} \dot{w}_T^T \nabla^2 F \dot{w}_T \right]$$

Assume (1) $n_2, n_3, \nabla F$ uncorrelated; (2) n_2, n_3 independent from $\nabla^2 F[w]$ i.e. $\langle n_i^T \nabla^2 F n_i \rangle_{\hat{n}_2, \hat{n}_3} = \frac{\text{Tr}(\nabla^2 F)}{N}$.

$$\langle \bullet \rangle_{\hat{n}_2,\hat{n}_3} = (-\gamma_1 \nabla \hat{F} + \gamma_2 \hat{n}_2 + \gamma_3 \sqrt{\frac{N}{T}} \hat{n}_3)^T \nabla \hat{F}$$

= $-\gamma_1 + 0 + 0$

 $\langle \bullet \rangle_{\hat{n}_2,\hat{n}_3}$

$$k \approx -\frac{||\nabla F||_2}{F} \left[\dot{w}_T^T \nabla \hat{F} + T \frac{||\dot{w}_T||_2^2}{2||\nabla F||_2} \dot{w}_T^T \nabla^2 F \dot{w}_T \right]$$

$$\langle \bullet \rangle_{\hat{n}_{2},\hat{n}_{3}} = (-\gamma_{1}\nabla\hat{F} + \gamma_{2}\hat{n}_{2} + \gamma_{3}\sqrt{\frac{N}{T}}\hat{n}_{3})^{T}\nabla\hat{F}$$

$$= -\gamma_{1} + 0 + 0$$

$$\langle \bullet \rangle_{\hat{n}_{2},\hat{n}_{3}} = \gamma_{1}^{2}\nabla\hat{F}^{T}\nabla^{2}F\nabla\hat{F} + \frac{\gamma_{2}^{2}\hat{n}_{2}\nabla^{2}F\hat{n}_{2} + \gamma_{3}^{2}\hat{n}_{3}\nabla^{2}F\hat{n}_{3}}{2||\nabla F||_{2}}$$

$$k \approx -\frac{||\nabla F||_2}{F} \left[\dot{w}_T^T \nabla \hat{F} + T \frac{||\dot{w}_T||_2^2}{2||\nabla F||_2} \dot{w}_T^T \nabla^2 F \dot{w}_T \right]$$

$$\langle \bullet \rangle_{\hat{n}_{2},\hat{n}_{3}} = (-\gamma_{1}\nabla\hat{F} + \gamma_{2}\hat{n}_{2} + \gamma_{3}\sqrt{\frac{N}{T}}\hat{n}_{3})^{T}\nabla\hat{F}$$

$$= -\gamma_{1} + 0 + 0$$

$$\langle \bullet \rangle_{\hat{n}_{2},\hat{n}_{3}} = \gamma_{1}^{2}\nabla\hat{F}^{T}\nabla^{2}F\nabla\hat{F} + \frac{\gamma_{2}^{2}\hat{n}_{2}\nabla^{2}F\hat{n}_{2} + \gamma_{3}^{2}\hat{n}_{3}\nabla^{2}F\hat{n}_{3}}{2||\nabla F||_{2}}$$

$$= \gamma_{1}^{2}\nabla\hat{F}^{T}\nabla^{2}F\nabla\hat{F} + \frac{\mathrm{Tr}(\nabla^{2}F)}{2||\nabla F||_{2}} \Big[\frac{\gamma_{2}^{2}}{N} + \frac{\gamma_{3}^{2}}{T}\Big]$$

$$\langle k \rangle_{\hat{n}_{2},\hat{n}_{3}} \approx -\frac{-||\nabla F||_{2}}{F} \Big[-\frac{\gamma_{1}}{F} + T\gamma_{1}^{2}\nabla \hat{F}^{T}\nabla^{2}F\nabla \hat{F} + T\frac{\operatorname{Tr}(\nabla^{2}F)}{2||\nabla F||_{2}^{2}} \Big[\frac{\gamma_{2}^{2}}{N} + \frac{\gamma_{3}^{2}}{T} \Big] \Big]$$

• Authors call $G_F[\dot{\hat{w}}_T] = {ullet}{\|\dot{w}_T\|_2^2}$ the "local task difficulty"

$$\langle k \rangle_{\hat{n}_2,\hat{n}_3} \approx -\frac{-||\nabla F||_2}{F} \Big[-\gamma_1 + T\gamma_1^2 \nabla \hat{F}^T \nabla^2 F \nabla \hat{F} + T \frac{\operatorname{Tr}(\nabla^2 F)}{2||\nabla F||_2^2} \Big[\frac{\gamma_2^2}{N} + \frac{\gamma_3^2}{T} \Big] \Big]$$

- Authors call $G_F[\dot{\hat{w}}_T] = \frac{\bullet}{||\dot{w}_T||_2^2}$ the "local task difficulty"
- Authors argue that sign(G_F[ŵ_T]) = sign(Tr(∇²F)) > 0. Why?

$$\langle k \rangle_{\hat{n}_{2},\hat{n}_{3}} \approx -\frac{-||\nabla F||_{2}}{F} \Big[-\gamma_{1} + T\gamma_{1}^{2} \nabla \hat{F}^{T} \nabla^{2} F \nabla \hat{F} + T \frac{\operatorname{Tr}(\nabla^{2} F)}{2||\nabla F||_{2}^{2}} \Big[\frac{\gamma_{2}^{2}}{N} + \frac{\gamma_{3}^{2}}{T} \Big] \Big]$$

- Authors call $G_F[\dot{\hat{w}}_T] = \frac{\bullet}{||\dot{w}_T||_2^2}$ the "local task difficulty"
- Authors argue that sign(G_F[ŵ_T]) = sign(Tr(∇²F)) > 0. Why?
- Learning occurs when:

$$\langle k \rangle_{\hat{n}_2,\hat{n}_3} > 0 \Rightarrow G_F[\dot{\hat{w}}_T] < rac{\gamma_1}{T(\gamma_1^2 + \gamma_2^2 + \gamma_3^2 rac{N}{T})}$$

$$\langle k \rangle_{\hat{n}_2,\hat{n}_3} \approx -\frac{-||\nabla F||_2}{F} \Big[-\gamma_1 + T\gamma_1^2 \nabla \hat{F}^T \nabla^2 F \nabla \hat{F} + T \frac{\operatorname{Tr}(\nabla^2 F)}{2||\nabla F||_2^2} \Big[\frac{\gamma_2^2}{N} + \frac{\gamma_3^2}{T} \Big] \Big]$$

- Authors call $G_F[\dot{\hat{w}}_T] = \frac{\bullet}{||\dot{w}_T||_2^2}$ the "local task difficulty"
- Authors argue that sign(G_F[ŵ_T]) = sign(Tr(∇²F)) > 0. Why?
- Learning occurs when:

$$\langle k \rangle_{\hat{n}_2,\hat{n}_3} > 0 \Rightarrow G_F[\dot{\hat{w}}_T] < \frac{\gamma_1}{T(\gamma_1^2 + \gamma_2^2 + \gamma_3^2 \frac{N}{T})}$$

• There exists optimal size N^* that maximizes $\langle k \rangle_{\hat{n}_2,\hat{n}_3}$

Local Task Difficulty

Local Task Difficulty

Top: Low intrinsic noise ($\gamma_3 = 0.05$). Bottom: High intrinsic noise ($\gamma_3 = 0.1$).

$$y^* = W^* x$$
 $y = W x$ $F(W) = \frac{1}{2} ||y^* - y||_2^2$

• Student-teacher framework with $W \in \mathbb{R}^{o \times i}$:

$$y^* = W^* x$$
 $y = W x$ $F(W) = \frac{1}{2} ||y^* - y||_2^2$

• Choose

• Student-teacher framework with $W \in \mathbb{R}^{o \times i}$:

$$y^* = W^* x$$
 $y = W x$ $F(W) = \frac{1}{2} ||y^* - y||_2^2$

• Choose

•
$$c_1, c_2 > 1$$

$$y^* = W^* x$$
 $y = W x$ $F(W) = \frac{1}{2} ||y^* - y||_2^2$

- Choose
 - $c_1, c_2 > 1$
 - Two semi-orthogonal matrices $B \in \mathbb{R}^{c_1 i imes i}, D \in \mathbb{R}^{c_2 o imes o}$

$$y^* = W^* x$$
 $y = W x$ $F(W) = \frac{1}{2} ||y^* - y||_2^2$

- Choose
 - $c_1, c_2 > 1$
 - Two semi-orthogonal matrices $B \in \mathbb{R}^{c_1 i \times i}, D \in \mathbb{R}^{c_2 o \times o}$
 - Random $W' \in \mathbb{R}^{c_2 o \times c_1 i}$ such that $W = D^T W' B$

$$y^* = W^* x$$
 $y = W x$ $F(W) = \frac{1}{2} ||y^* - y||_2^2$

- Choose
 - $c_1, c_2 > 1$
 - Two semi-orthogonal matrices $B \in \mathbb{R}^{c_1 i \times i}, D \in \mathbb{R}^{c_2 o \times o}$
 - Random $W' \in \mathbb{R}^{c_2 o \times c_1 i}$ such that $W = D^T W' B$
- Interpretation: add neurons or redundant synapses

$$y^* = W^* x$$
 $y = W x$ $F(W) = \frac{1}{2} ||y^* - y||_2^2$

- Choose
 - $c_1, c_2 > 1$
 - Two semi-orthogonal matrices $B \in \mathbb{R}^{c_1 i \times i}, D \in \mathbb{R}^{c_2 o \times o}$
 - Random $W' \in \mathbb{R}^{c_2 o \times c_1 i}$ such that $W = D^T W' B$
- Interpretation: add neurons or redundant synapses
- Replace W with $D^T W' B$

$$y = D^{T}W'Bx$$
$$F[W'] = F[W]$$
$$||F[W']||_{F}^{2} = ||F[W]||_{F}^{2}$$
$$Tr(\nabla^{2}F[W']) = c_{2} Tr(\nabla^{2}F[W])$$

$$y = D^T W' Bx \iff Dy = W' Bx$$

• Define
$$N = io$$
, $\tilde{N} = c_1 c_2 io$

• Define
$$N = io, \tilde{N} = c_1 c_2 io$$

• Compare learning rate k(N) vs $k(\tilde{N})$:

$$\langle k(N) \rangle \approx \frac{-||\nabla F||_2}{F} \Big[-\frac{\gamma_1}{7} + T\gamma_1^2 \nabla \hat{F}^T \nabla^2 F \nabla \hat{F} + T \frac{\operatorname{Tr}(\nabla^2 F)}{2||\nabla F||_2^2} \Big[\frac{\gamma_2^2}{N} + \frac{\gamma_3^2}{T} \Big] \Big]$$

• Define
$$N = io, \tilde{N} = c_1 c_2 io$$

• Compare learning rate k(N) vs $k(\tilde{N})$:

 $\langle k(N) \rangle \approx \frac{-||\nabla F||_2}{F} \Big[-\frac{\gamma_1}{7} + T\gamma_1^2 \nabla \hat{F}^T \nabla^2 F \nabla \hat{F} + T \frac{\operatorname{Tr}(\nabla^2 F)}{2||\nabla F||_2^2} \Big[\frac{\gamma_2^2}{N} + \frac{\gamma_3^2}{T} \Big] \Big]$

• If $\nabla F[W']$ projects equally onto Hessian eigenvectors:

 $\nabla \hat{F}[W']^T \nabla^2 F[W'] \nabla \hat{F}[W'] \approx c_2 \nabla \hat{F}[W]^T \nabla^2 F[W] \nabla \hat{F}[W]$

• Define
$$N = io, \tilde{N} = c_1 c_2 io$$

• Compare learning rate k(N) vs $k(\tilde{N})$:

 $\langle k(N) \rangle \approx \frac{-||\nabla F||_2}{F} \Big[-\frac{\gamma_1}{7} + T\gamma_1^2 \nabla \hat{F}^T \nabla^2 F \nabla \hat{F} + T \frac{\operatorname{Tr}(\nabla^2 F)}{2||\nabla F||_2^2} \Big[\frac{\gamma_2^2}{N} + \frac{\gamma_3^2}{T} \Big] \Big]$

- If $\nabla F[W']$ projects equally onto Hessian eigenvectors: $\nabla \hat{F}[W']^T \nabla^2 F[W'] \nabla \hat{F}[W'] \approx c_2 \nabla \hat{F}[W]^T \nabla^2 F[W] \nabla \hat{F}[W]$
- Previously:

$$\frac{\operatorname{Tr}(\nabla^2 F[W'])}{2||\nabla F[W']||_2} = \frac{c_2 \operatorname{Tr}(\nabla^2 F[W])}{2||\nabla F[W]||_2}$$

• Define
$$N = io, \tilde{N} = c_1 c_2 io$$

• Compare learning rate k(N) vs $k(\tilde{N})$:

 $\langle k(N) \rangle \approx \frac{-||\nabla F||_2}{F} \Big[-\gamma_1 + T\gamma_1^2 \nabla \hat{F}^T \nabla^2 F \nabla \hat{F} + T \frac{\operatorname{Tr}(\nabla^2 F)}{2||\nabla F||_2^2} \Big[\frac{\gamma_2^2}{N} + \frac{\gamma_3^2}{T} \Big] \Big]$

- If $\nabla F[W']$ projects equally onto Hessian eigenvectors: $\nabla \hat{F}[W']^T \nabla^2 F[W'] \nabla \hat{F}[W'] \approx c_2 \nabla \hat{F}[W]^T \nabla^2 F[W] \nabla \hat{F}[W]$
- Previously:

$$\frac{\operatorname{Tr}(\nabla^2 F[W'])}{2||\nabla F[W']||_2} = \frac{c_2 \operatorname{Tr}(\nabla^2 F[W])}{2||\nabla F[W]||_2}$$

• Thus: $\langle k(\tilde{N}) \rangle \approx \frac{-||\nabla F||_2}{F} \Big[-\frac{\gamma_1}{F} + Tc_2 \gamma_1^2 \nabla \hat{F}^T \nabla^2 F \nabla \hat{F} + Tc_2 \frac{\text{Tr}(\nabla^2 F)}{2||\nabla F||_2^2} \Big[\frac{\gamma_2^2}{\tilde{N}} + \frac{\gamma_3^2}{T} \Big] \Big]$

Find N^* that maximizes $k(\tilde{N})$:

$$\mathsf{V}^* pprox rac{T\gamma_2^2}{\gamma_3^2}(1-rac{\gamma_1^2}{\gamma_2^2})$$

If no task-irrelevant plasticity, $\gamma_2 = 0 \Rightarrow N^* \approx 0 - \frac{T\gamma_1^2}{\gamma_3^2} < 0 \Rightarrow$ optimal network size is negative?

1

Find N^* that maximizes $k(\tilde{N})$:

$$\mathsf{V}^* pprox rac{T\gamma_2^2}{\gamma_3^2}(1-rac{\gamma_1^2}{\gamma_2^2})$$

If no task-irrelevant plasticity, $\gamma_2 = 0 \Rightarrow N^* \approx 0 - \frac{T\gamma_1^2}{\gamma_3^2} < 0 \Rightarrow$ optimal network size is negative?

• Student-Teacher framework with logistic sigmoid activation functions :

$$h^{(k)} = \sigma(W^{(k)}h^{k-1})$$

• Student-Teacher framework with logistic sigmoid activation functions :

$$h^{(k)} = \sigma(W^{(k)}h^{k-1})$$

• Replace *W* with larger *W'*, with new synaptic weights initialized to zero

• Student-Teacher framework with logistic sigmoid activation functions :

$$h^{(k)} = \sigma(W^{(k)}h^{k-1})$$

- Replace *W* with larger *W*', with new synaptic weights initialized to zero
- Through some derivation I didn't have time to read:

$$N^* = \frac{T\gamma_2^2}{\gamma_3^2} \Big[\frac{\gamma_1^2 N}{\gamma_2^2 N^*} \Big]$$

- Larger networks learn better, but
- Intrinsically noisy synapses eventually negate benefits of larger network size
- Experimental Prediction: Circuit size should be inversely proportional to per-synaptic rate of change
- Experimental Prediction: suppression of synaptic noise allows for larger circuit formation

Questions?

20

 T. M. Bartol Jr, C. Bromer, J. Kinney, M. A. Chirillo, J. N. Bourne, K. M. Harris, and T. J. Sejnowski.
 Nanoconnectomic upper bound on the variability of synaptic plasticity. *Elife*, 4:e10778, 2015.

E. B. Bloss, M. S. Cembrowski, B. Karsh, J. Colonell, R. D. Fetter, and N. Spruston.

Single excitatory axons form clustered synapses onto ca1 pyramidal cell dendrites.

Nature neuroscience, 21(3):353, 2018.

 C. Clopath, T. Bonhoeffer, M. Hübener, and T. Rose.
 Variance and invariance of neuronal long-term representations.

Philosophical Transactions of the Royal Society B: Biological Sciences, 372(1715):20160161, 2017.

S. Druckmann, L. Feng, B. Lee, C. Yook, T. Zhao, J. C. Magee, and J. Kim.

Structured synaptic connectivity between hippocampal regions.

Neuron, 81(3):629-640, 2014.

R. Dvorkin and N. E. Ziv.

Relative contributions of specific activity histories and spontaneous processes to size remodeling of glutamatergic synapses. *PLoS biology*, 14(10):e1002572, 2016.

K. Eichler, F. Li, A. Litwin-Kumar, Y. Park, I. Andrade, C. M. Schneider-Mizell, T. Saumweber, A. Huser, C. Eschbach, B. Gerber, et al.

The complete connectome of a learning and memory centre in an insect brain.

Nature, 548(7666):175, 2017.
D. Kappel, R. Legenstein, S. Habenschuss, M. Hsieh, and W. Maass.

A dynamic connectome supports the emergence of stable computational function of neural circuits through reward-based learning.

Eneuro, 5(2), 2018.

Y. Loewenstein, U. Yanover, and S. Rumpel.
Predicting the dynamics of network connectivity in the neocortex.

Journal of Neuroscience, 35(36):12535-12544, 2015.

References v

- G. Mongillo, S. Rumpel, and Y. Loewenstein.
 Intrinsic volatility of synaptic connections—a challenge to the synaptic trace theory of memory.
 Current opinion in neurobiology, 46:7–13, 2017.
- D. V. Raman, A. P. Rotondo, and T. O'Leary. Fundamental bounds on learning performance in neural circuits.

Proceedings of the National Academy of Sciences, 116(21):10537–10546, 2019.

L. Susman, N. Brenner, and O. Barak.
 Stable memory with unstable synapses.
 Nature communications, 10(1):1–9, 2019.