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Summary

Biological intelligence must contend with unsupervised, streaming data. How should one

approach machine learning in this data regime?

We consider feature models, a class of unsupervised models that attempts unsupervised

discovery of latent features underlying data and that encompasses PCA, FA, ICA & NMF

We make feature models significantly more applicable to streaming data by imbuing them with

the ability to create new features, online, in a probabilistic and principled manner

To achieve this, we derive a novel recursive form of the Indian Buffet Process (IBP), which we

term the Recursive IBP (R-IBP)

We show on synthetic and real data that R-IBP achieves comparable or better performance in

significantly less time than existing sampling and variational baselines

Notation and Background

Observations: o1:N where on ∈ RD

Features: {Ak}K
k=1 where Ak ∈ RD and K unknown

Indicators: z1:N where zn ∈ {0, 1}K and K unknown

Generative model: z1:N ∼ IBP (α, β)
{Ak} ∼ p({Ak})

on|zn, {Ak} ∼ p(o|zn, {Ak})

Indian Buffet Process (IBP) [1]: The IBP is a 2-parameter α > 0, β > 0 stochastic process
defining a distribution over binary matrices with finitely many rows and unbounded number of

columns. Let λn ∼ Poisson(αβ/(β + n − 1)) and Λn
def=

∑n′=n
n′=1 λn′. Then IBP (α, β) is:

p(znk = 1|z<n,k, Λn−1, λn, α, β) def=


1

β+n−1
∑

n′<n zn′k if 1 ≤ k ≤ Λn−1
1 if Λn−1 < k ≤ Λn−1 + λn

0 otherwise

Goal: Streaming Inference for Infinite Feature Models

Filter a posterior over the current observation’s binary latent variables zn
def= {znk}k=∞

k=1 and the

latent features {Ak}∞
k=1, given the entire history of observations o≤n, subject to two constraints:

(1) Inference must be performed online, i.e., the nth observation is discarded before proceeding,

(2) Inference must be efficient in the large N limit

Challenges

1. Dependence on Entire History: The IBP’s conditional distribution p(znk|z<nk, Λn−1, λn)
renders the current indicators zn dependent on all previous indicators z<n

2. Exponentially Many Evaluations of Likelihood: zn is the set of binary variables {znk}k=Λn
k=1 ,

meaning the likelihood must be evaluated for 2Λn possible configurations at each step

3. Non-Factorized Posterior: In the prior, the indicators are independent, i.e.,

p(zn|z<n, Λn−1, λn) =
∏k=Λn

k=1 p(znk|z<nk, Λn−1, λn). After conditioning on observations, the

indicators are no longer independent, i.e., p(zn|o≤n) 6=
∏k=Λn

k=1 p(znk|o≤n)
4. Unknown Posterior over Number of Features: What are the posteriors for the number of

new features λn and the total number of features Λn?

The Recursive Indian Buffet Process (R-IBP)

Idea: Break the dependence on the entire history by converting the IBP’s conditional distribution

p(znk = 1|z<n, Λn−1, λn, α, β) into a sequence of marginal distributions p(znk = 1|α, β) that can
be efficiently computed recursively, similar to [2]:

p(znk = 1|α, β) = 1
β + n − 1

∑
n′<n

p(zn′k = 1) + p(Λn−1 ≤ k − 1) − p(Λn−1 + λn ≤ k − 1) (1)

Figure 1. Visualization of the Recursive IBP. Intuitively, the probability that the kth feature is present in the nth
observation is given by the running sum of how probable the kth feature’s presence was in all previous observation

(left), plus the difference of two Poisson CDFs that drives new observations to create new features (center).

Figure 2. (Left) Monte Carlo vs. Analytical Expression. Over a wide range of (α, β) pairs, we find excellent match

between Monte Carlo estimates of the marginal probabilities drawn from the conditional p(zn|z<n, α, β) and the

R-IBP’s marginal probabilities p(zn|α, β). (Right) Mean-Squared Error between analytical expression for the

marginal and a Monte Carlo marginal estimate. The mean-squared error falls approximately as a power law.

Analytical Results: R-IBP in the Zero-Noise Limit

Does inference with R-IBP converge? To what? How quickly? Consider a linear-Gaussian model

O = ZA + E. In the limit σ2
o → 0, R-IBP fits the data by minimizing the objective function:

L(Z, A, ΛN ) def=
[
(O − ZA)T (O − ZA)

]
+ γ2ΛN (2)

Intuition: R-IBP minimizes the squared error between the observations and the subset of infinite

features thought to be present, while regularizing the number of features, akin to BIC [3].

Empirical Results: Synthetic Data & MNIST

Figure 3. R-IBP Feature Recovery on Streaming Data.

R-IBP recovers the correct order of magnitude of

number of features (left), adding features as more

observations are encountered (right).
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Figure 4. R-IBP Recovers Intuitive Features for MNIST

Classes. Feature similarity matches the confusion

matrix of an independently-trained convolutional

neural network classifier.

Empirical Results: Synthetic Data

Figure 5. Comparison of Linear-Gaussian Inference Algorithms. Over a range of α values, R-IBP is significantly

faster than baseline inference algorithms and has better (lower) negative log posterior predictive values than the

streaming baselines and even some non-streaming baselines, averaged over 10 synthetic datasets. We fix β = 1.0
because baseline algorithms are only defined for β = 1.0. The correct α, β values are assumed known.

Empirical Results: UCI Tabular Data
2014 Diabetic Patients & 2016 Cancer Gene Expression

Figure 6. R-IBP performance on diabetic patient data and cancer gene expression. R-IBP matches or outperforms

baseline algorithms across hyperparameter configurations. R-IBP runtime scales linearly with α and quasilinearly

with β (right), qualitatively matching our complexity analysis.

Conjecture: Graphical Structure Prevents Multiplicative Errors

Figure 7. Beta Process (BP) vs. R-IBP. Many baseline algorithms are based on the BP (left), which chain multiplies

terms (red) to compute each feature’s probability (yellow) for Z (aqua). In contrast, the Recursive IBP (right) creates

columns (green), then adds terms within columns of Z (aqua). We conjecture R-IBP’s adding inferred quantities to

running sums, rather than chain multiplying inferred quantities, prevents errors from compounding and enables

R-IBP to outperform even non-streaming baseline algorithms based on the Beta Process.
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