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Abstract
Unsupervised learning from a continuous stream
of data is arguably one of the most common
and most challenging problems facing intelligent
agents. One class of unsupervised models, collec-
tively termed feature models, attempts unsuper-
vised discovery of latent features underlying the
data and includes common models such as PCA,
ICA, and NMF. However, if the data arrives in
a continuous stream, determining the number of
features is a significant challenge, and the num-
ber may grow with time. In this work, we make
feature models significantly more applicable to
streaming data by imbuing them with the ability
to create new features, online, in a probabilistic
and principled manner. To achieve this, we derive
a novel recursive form of the Indian Buffet Pro-
cess, which we term the Recursive IBP (R-IBP).
We demonstrate that R-IBP can be be used as a
prior for feature models to efficiently infer a poste-
rior over an unbounded number of latent features,
with quasilinear average time complexity and log-
arithmic average space complexity. We compare
R-IBP to existing sampling and variational base-
lines in two feature models (Linear Gaussian and
Factor Analysis) and demonstrate on synthetic
and real data that R-IBP achieves comparable or
better performance in significantly less time.

1. Introduction
Feature models are a broad class of unsupervised probabilis-
tic models that aim to decompose data into an unknown
number of unknown features under certain assumptions,
a class which includes principal component analysis, fac-
tor analysis, independent component analysis, non-negative
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Figure 1. Motivation for Infinite Feature Models. As more data
are observed, a feature model (here: PCA) requires increasingly
more features to explain the data (Omniglot handwritten characters)
(left) or else becomes increasingly unable to do so (right).

matrix factorization, matching pursuit, and more.

A fundamental problem in feature modeling – analogous to
the problem in mixture modeling of choosing the number
of clusters – is choosing the number of features. Users
typically employ one of two approaches: Either (1) pre-
specifying a fixed number of features or (2) retroactively
choosing a number of features after seeing all the data based
on some criterion (e.g., selecting the number of principal
components necessary to explain 95% of the variance). In
a streaming setting, however, where data are received over
time, neither approach suffices. For instance, representing
handwritten characters with a fixed number of principal
components becomes inadequate as more characters are
encountered (Fig. 1). Thus the number of features should
flexibly adapt to the data in the streaming context.

Such flexibility is a goal not only because the streaming
setting for feature models is important in its own right, but
also because feature models are a pervasive approach taken
in neuroscience and cognitive science to explain how in-
telligent agents model the world as they move through it
(Olshausen & Field, 1997; Hyvärinen, 2010; Pehlevan et al.,
2015). Intelligent agents, from mice to humans to mobile
devices, must deal with streaming data since these agents
operate with limited memory that renders storage of and
computation on all previously seen data prohibitive.

This raises the question of how to perform efficient stream-
ing inference for “infinite” feature models, a question we
answer here. Following the approach of Schaeffer et al.
(2021) to efficient streaming inference for “infinite” mix-
ture models, we first show that the Indian Buffet Process
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(Griffiths & Ghahramani, 2005), a stochastic process fre-
quently used for Bayesian nonparametric feature models,
can be rewritten in a novel form designed for streaming
inference with expected quasilinear time and expected log-
arithmic space complexity. We then demonstrate on both
synthetic and real (tabular & non-tabular) data that R-IBP
matches or exceeds the performance of five streaming and
non-streaming baseline inference algorithms in less time.

2. Background
2.1. Generative Model

We consider observing a sequence of D-dimensional vari-
ables o1:N (on ∈ RD) based on a sequence of N K-
dimensional binary latent variables z1:N , with zn ∈
{0, 1}K , K unknown, and ·1:N denoting the sequence
(·1, ·2, ..., ·N ). Each znk in the (N × K)-dimensional la-
tent variable matrix Z denotes the presence or absence of
the kth feature in the nth observation. Each feature is some
unknown vector Ak ∈ RD drawn i.i.d. from some distri-
bution p(A·). Because the number of latent features K
is unknown, the Indian Buffet Process (IBP) serves as a
flexible prior over the latent indicators:

z1:N ∼ IBP (α, β)

Ak ∼i.i.d p(A·)

on|zn, {Ak} ∼ p(o|zn, {Ak})
(1)

This encompasses many feature models including Principal
Component Analysis, Factor Analysis, Independent Com-
ponent Analysis, and Non-Negative Matrix Factorization.

2.2. Indian Buffet Process

The Indian Buffet Process (IBP) (Griffiths & Ghahramani,
2011) is a two-parameter1 (α > 0, β > 0) stochastic pro-
cess that defines a discrete distribution over binary ma-
trices with finitely many rows (observations) and an un-
bounded number of columns (features). The name IBP
arises from imagining customers (rows/observations) ar-
riving sequentially at a buffet that has an infinite number
of dishes (columns/features) and selecting which dishes to
eat: the nth customer selects an integer number of new
dishes λn ∼ Poisson(αβ/(β + n − 1)) and then selects
previous dishes with probability proportional to the number
of previous customers who selected those dishes. Denot-
ing the total number of dishes after the first n customers
Λn =

∑n′=n
n′=1 λn′ , the IBP defines a conditional distribution

1The IBP originally had a single parameter (Griffiths & Ghahra-
mani, 2005) but was extended to two (Ghahramani et al., 2007)
and later three (Teh & Görür, 2009). Our paper applies equally to
all, but since our focus is on efficient streaming inference and not
particular properties of an IBP variant, we chose the two parameter
IBP to balance expositional simplicity against model flexibility.

for the nth row and kth column’s binary variable znk:

p(zn,k = 1|z<n,k,Λn−1, λn, α, β)

=


1

β+n−1

∑
n′<n zn′k if 1 ≤ k ≤ Λn−1

1 if Λn−1 < k ≤ Λn−1 + λn

0 otherwise
(2)

The IBP is a useful stochastic process for defining a prior
over the number of features as well as the presence/absence
of features in any particular observation because it allows
for the number of features to grow as more data are ob-
served while independently controlling the features’ spar-
sity. Because each λn is an independent Poisson with
rate αβ/(β + n − 1) and because the sum of indepen-
dent Poisson random variables is itself Poisson, we know
that Λn ∼ Poisson(

∑n
n′=1 αβ/(β + n′ − 1)). This im-

plies the expected number of dishes grows logarithmically
with n because E[Λn] =

∑n
n′=1 αβ/(β + n′ − 1)) ≈

αβ
∫ n

n′=1
dn′/(β+n′−1) = αβ(log(β+n−1)−log(β)) ≈

αβ log(1 + n/β); this detail becomes important in our later
complexity analysis. Ahead, we often omit α, β for brevity.

3. Efficient Streaming Inference
3.1. Objective

Our goal is to infer a posterior distribution over the cur-
rent observation’s binary latent variables zn

def
={znk}k=∞

k=1

and the latent features {Ak}∞k=1, given the entire history of
observations o≤n, subject to two constraints:

1. Inference must be performed online, i.e. the nth obser-
vation is discarded before proceeding to the (n+ 1)th
observation.

2. Inference must be efficient in the large sample limit.

Inferring the latent posterior p(zn, {Ak}|o≤n) is often
called filtering (e.g., Kalman filter, particle filter). We
slightly abuse terminology by calling p(zn, {Ak}|o<n) the
filtering prior and p(zn, {Ak}|o≤n) the filtering posterior,
to indicate whether the observation on is conditioned upon.

3.2. Challenges with Streaming Inference

Filtering with an IBP prior requires solving several emergent
problems. For concreteness, we illustrate these problems
on the commonly used linear-Gaussian model (Griffiths
& Ghahramani, 2005; Teh et al., 2007; Doshi-Velez et al.,
2009; Paisley & Carin, 2009; Doshi-Velez & Ghahramani,
2009), although our experiments will also showcase Factor
Analysis. In the linear-Gaussian model, O ∈ RN×D are the
observed data, Z ∈ {0, 1}N×K are the binary indicators,
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Figure 2. Visualization of the Recursive IBP. To make streaming inference possible, we break the IBP’s dependence on the entire history
z<n by converting the conditional p(zn|z<n, α, β) into a sequence of marginals p(zn|α, β). The running sum of the previous marginal
distributions

∑
n′<n p(zn′k = 1) (left) and the distribution over the number of dishes p(Λn = k) (middle) together determine the next

marginal distribution p(znk = 1) (right).

A ∈ RK×D are the features, and E ∈ RN×D are noise.

Z ∼ IBP (α, β)

Ak ∼ N (µA,ΣA)

En ∼ N (0, σ2
oID×D)

O = ZA+ E

(3)

On streaming data, each on (i.e. row of O) is observed, then
discarded. What are the challenges for inference?

1. Dependence on Entire History: The IBP’s condi-
tional distribution p(znk|z<nk,Λn−1, λn) renders the
current indicators zn dependent on all previous indi-
cators z<n, implying any inference algorithm must
remember the entire history of indicators.

2. Exponentially Many Evaluations of Likelihood: The
likelihood p(on|zn;A) looks benign, but recall that zn
is the set of binary variables {znk}k=Λn

k=1 . This means
computing a posterior requires evaluating the likeli-
hood for 2Λn possible configurations at each step n.

3. History Dependence and Non-Factorized
Posterior: In the prior, the indicators are
independent, i.e., p(zn|z<n,Λn−1, λn) =∏k=Λn

k=1 p(znk|z<nk,Λn−1, λn), although this in-
dependence depends on knowing the entire history
z<n. Upon conditioning on the observations,
the indicators are no longer independent, i.e.,
p(zn|o≤n) ̸=

∏k=Λn

k=1 p(znk|o≤n), because features
are not required to be orthogonal and the pres-
ence/absence of one feature can “explain away” the
presence/absence of another feature.

4. Unknown Posterior over Number of Features: In
the IBP prior, the number of new indicators per obser-
vation λn and the total number of indicators after n
observations Λn =

∑n
n′=1 λn′ are both Poisson with

known rates. But what are the posterior distributions,
and are they efficiently computable?

3.3. Recursive Expression for IBP Marginals

Our approach is to recast the IBP in a novel form that breaks
the IBP conditional distribution’s dependence on the entire
history. We achieve this by converting the conditional dis-
tribution p(znk = 1|z<n,Λn−1, λn, α, β), which depends
on the entire history, into a sequence of marginal distri-
butions p(znk = 1|α, β) that can be efficiently computed
recursively. The marginal distribution p(znk = 1) is exactly
equal to the IBP’s conditional distribution averaged over all
sample paths:

p(znk = 1) = Ep(znk)[I(znk = 1)]

= Ep(z<n,Λn−1,λn)

[
Ep(znk|z<n,Λn−1,λn)[I(znk = 1)]

]
= Ep(z<n,Λn−1,λn)

[
p(znk|z<n,Λn−1, λn)

]
Substituting Eqn. (2) and simplifying yields a recursive
expression for the marginal distribution:

p(znk = 1) =
1

β + n− 1

∑
n′<n

p(zn′k = 1)

+ p(Λn−1 ≤ k − 1)− p(Λn−1 + λn ≤ k − 1)

(4)

We term Eqn. (4) the recursive form of the IBP, or the Re-
cursive IBP for short. Intuitively, the Recursive IBP tells us
that the probability that the kth feature is present in the nth
observation is given by the running sum of how probable
the kth feature’s presence was in each previous observation,
plus the difference of two terms; this difference is between
two Poisson CDFs, which drives new observations to add
new features. Fig. 2 offers a visual intuition for Eqn. (4),
showing how the accumulating probability mass of previous
dishes competes with the addition of new dishes to deter-
mine the next customer’s likely dishes. This recursive form
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of the IBP preserves two qualities of the IBP: (1) if a feature
is frequently present in observations, then the next obser-
vation is also likely to possess that feature, and (2) new
features can be created to explain new data.

3.4. Performing Inference with the Recursive IBP

For the IBP as a stochastic process, Eqn. (4) is exact. How-
ever, to use the R-IBP for inference, we use one approxi-
mation. To see why, suppose we want a prior for the next
observation and so condition on the sequence of observa-
tions up to but excluding the current index:

p(znk = 1|o<n) =
1

β + n− 1

∑
n′<n

p(zn′k = 1|o<n)

+ p(Λn−1 ≤ k − 1|o<n)− p(Λn−1 + λn ≤ k − 1|o<n)

Each term p(zn′k = 1|o<n) in the sum requires that, for
each observation, all previous posteriors must be retroac-
tively revised; these revisions would require O(n) opera-
tions at each step n, and would also require remembering
all n observations. To avoid this, we turn to approximate
inference by approximating the true IBP prior p(zn|o<n)
with an approximate IBP-like prior q(zn|o<n):

q(znk|o<n)
def
=

1

β + n− 1

∑
n′<n

q(zn′k = 1|o≤n′)

+ q(Λn−1 ≤ k − 1|o<n)− q(Λn−1 + λn ≤ k − 1|o<n)
(5)

This approximate prior is akin to the true prior, with the key
difference that the former prohibits revising previous pos-
teriors based on later observations. For the linear-Gaussian
model, the variational family in which we optimize is:

q(zn|o≤n; θn)
def
=
∏
k

q(znk|o≤n;bnk)q(Ak|o≤n;µnk,Σnk)

q(znk|o≤n; bnk)
def
= Bern(bnk)

q(Ak|o≤n;µnk,Σnk)
def
=N (µnk,Σnk)

where θn
def
={bnk}k ∪ {µnk}k ∪ {Σnk}k are the variational

parameters and the optimization problem is to maximize the
approximate lower bound:

L(θn)
def
= Eq(zn,A|o≤n)[log p(on|zn, A)]
+ Eq(A|o≤n)[log q(A|o<n)]

+ Eq(zn|o≤n)[log q(zn|o<n)

+H[q(zn, A|o≤n)]

(6)

The variational parameters must be solved self-consistently,
and we derive the necessary equations in closed form in the

Supplement. At the risk of overloading terminology, we
also call this inference algorithm R-IBP based on its origin.
R-IBP operates by performing a single iteration of message
passing on the IBP’s directed graph. Two advantages of
our approximation are that it solves the second challenge
(exponentially many likelihood evaluations) and the third
(non-factorized posterior), but at the cost of using an objec-
tive function that is no longer a guaranteed lower bound on
the log evidence. We do not necessarily see this as a prob-
lem since prior work shows that tighter log evidence bounds
do not necessarily produce better models (Rainforth et al.,
2019). Yet the fourth issue remains: what is the filtered
posterior q(Λn|o≤n) over the total number of features?

3.5. Distribution over Number of Features

Perhaps surprisingly, under the same assumption and regard-
less of the particular feature model, the filtered posterior
over the number of features is Poisson with a calculable rate.
The total number of dishes after the nth customer is defined:

Λn
def
=

k=∞∑
k=1

min
(
1,

n′=n∑
n′=1

zn′k

)
Each term in the sum counts whether the kth feature was
present in at least one of the first n observations, and the
sum is therefore a Bernoulli random variable with success
probability 1−

∏n′=n
n′=1 p(zn′k = 0|o≤n′) because, in order

for the k-th feature to not exist, the feature cannot have been
present in any of the first n observations. Le Cam’s Theo-
rem (Le Cam, 1960) tells us that the sum of independent
Bernoullis is closely approximated by a Poisson:

q(Λn|o≤n) ≈ Poisson

(
k=∞∑
k=1

(
1−

n′=n∏
n′=1

q(zn′k = 0|o≤n′)
))

Additionally, because the prior over the number of new
features added by the nth observation is independent from
the preceding total number of features, the second Poisson
in Eqn. (5) is distributed:

q(Λn|o<n) ≈ Poisson

(
αβ

β + n− 1

+

k=∞∑
k=1

(
1−

n′=n−1∏
n′=1

q(zn′k = 0|o≤n′)
))

Although the equation looks daunting, all terms are available
through R-IBP. For detailed derivation, see the Supplement.

3.6. Complexity Analysis

The time and space complexity of the Recursive IBP is
determined by the number of latent features Λn, which is
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unbounded and neither converges nor concentrates. If we in-
stead use the expected number of latent features in the prior
E[Λn] = αβ log(1+β/n), and assume that we take at most
S coordinate ascent steps per observation, the average-case
time complexity per observation is O(SE[Λn]), making the
total average-case time complexity for N observations quasi-
linear O(NS log(1 + N)). The total average-case space
complexity is logarithmic O(E[ΛN ]) = O(log(1 +N)) to
store the variational parameters, the running sum of proba-
bility masses and the running product of probability masses.
Empirically, we find that R-IBP follows these asymptotic
trends on both synthetic and real data (Fig. 8).

4. Analytical Results
4.1. R-IBP in Zero-Noise Limit

In general, given some generative model and an inference
algorithm, one often wants to know whether the algorithm
converges, what it converges to, and how quickly it con-
verges. Feature models are notoriously difficult to charac-
terize analytically for several reasons including degenera-
cies and combinatoric complications. To our knowledge,
there is one setting in which IBP theory was achieved: the
linear-Gaussian model in the zero noise limit, i.e. σ2

o → 0
(Broderick et al., 2013b). By considering R-IBP in the
same limit, and similarly reparameterizing the model with
α

def
= exp(−γ2/2σ2

o) and setting β = 1, we show:

Proposition 4.1. Consider a linear-Gaussian model
O = ZA + E with an IBP (α, β) prior on Z. In the
limit σ2

o → 0, R-IBP fits the data using Z and A with a
regularization term penalizing the number of features ΛN

by minimizing the objective function:

Tr
[
(O − ZA)T (O − ZA)

]
+ γ2ΛN (7)

This objective function tells us R-IBP will seek to minimize
the squared error between the observations and the subset
of infinite features thought to be present (or equivalently,
maximize the log likelihood of the data), with a regulariza-
tion term that penalizes the number of used features. This
objective function is akin to the Bayesian Information Crite-
rion (Schwarz, 1978), in that it maximizes the log likelihood
while penalizing the number of parameters. However, R-
IBP does not necessarily converge because it performs only
a single pass through the data and multiple passes may be
necessary for convergence. Our proof works by showing
that in the σ2

o → 0 limit, R-IBP becomes Broderick et al.’s
BP-Means algorithm (Broderick et al., 2013b) and thus min-
imizes the same objective; see the Supplement for details.

Figure 3. Monte Carlo vs. Analytical Expression. Over a wide
range of (α, β) parameter pairs, we find excellent visual match be-
tween Monte Carlo estimates of the marginal probabilities drawn
from the conditional p(zn|z<n, α, β) (left) and the Recursive
IBP’s marginal probabilities p(zn|α, β) (right).

5. Experimental Results
5.1. Exactness of Recursive IBP for the IBP

Setting inference aside temporarily and considering solely
the IBP stochastic process, the Recursive IBP should ex-
actly give the IBP indicators’ marginal distributions. We
confirm this by comparing Eqn. (4)’s analytical expression
to 5000 Monte Carlo samples drawn from the IBP’s con-
ditional distribution over α ∈ {1.1, 10.78, 15.37} × β ∈
{2.3, 5.6, 12.9}. Visually, the analytical and Monte Carlo
plots display excellent agreement (Fig. 3). Quantitatively,
the mean squared error between the analytical expression
for all p(znk|α, β) and the Monte Carlo estimates falls ap-
proximately as a power law in the number of Monte Carlo
samples (Fig. 4) for all (α, β) values. This supports our
claim that R-IBP is exact for the IBP as a stochastic process.

5.2. Infinite Linear Gaussian on Synthetic Data

We next turned to performing inference in the linear-
Gaussian (LG) feature model given in Eqn. (3):

O = ZA+ E

where the indicators Z are drawn from an IBP and the fea-
tures A = {Ak} from a matrix Normal distribution. We
used synthetically generated data to have access to ground
truth features. We compared R-IBP against five baseline al-
gorithms. The first two baselines are streaming algorithms,
whereas the last three baselines are non-streaming algo-
rithms that have unfettered access to all observations and
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Figure 4. Mean-Squared Error between analytical expression
for the marginal and a Monte Carlo marginal estimate. Over a
wide range of (α, β) pairs, the mean-squared error between our an-
alytical expression and Monte Carlo estimates falls approximately
as a power law, showing the exactness of Eqn. (4).

therefore serve as upper bounds on performance; any com-
parison against these last three baselines maximally disfa-
vors our method. The baseline algorithms are:

• Streaming Variational Inference (Widjaja & Doshi-
Velez, 2017), both “finite” and “infinite” variants.

• Variational Inference (Doshi-Velez et al., 2009), both
“finite” and “infinite” variants.

• Hamiltonian Monte Carlo-Gibbs Sampling (Duane
et al., 1987), implemented in Pyro (Bingham et al.,
2019)

We included Widjaja & Doshi-Velez (2017)’s method de-
spite being less well known because it is the only stream-
ing variational inference algorithm for the IBP that we
are aware of. At a high level, the algorithm works via
a Beta Process stick-breaking construction. Specifically,
each presence/absence indicator znk for the kth feature is
sampled i.i.d. from Bernoulli(πk), where πk is defined
as a product of i.i.d. Beta variables πk

def
=
∏

k′≤k vk′ and
vk′ ∼i.i.d. Beta(α, 1); the variational distribution for each
vk′ is then defined as Beta(τk′1, τk′2) for variational pa-
rameters τk′1, τk′2.

Quantitatively comparing inference algorithms for feature
models is notoriously difficult, and many papers skip at-
tempting to do so altogether, e.g., (Griffiths & Ghahramani,
2005; Teh et al., 2007; Miller et al., 2009; Paisley & Carin,
2009; Paisley et al., 2012; 2010). The most appropriate
metric we found was the (negative log) posterior predictive
probability (Widjaja & Doshi-Velez, 2017; Paisley et al.,
2011), as the metric may be be computed for any infer-
ence algorithm, regardless of underlying parametric assump-
tions. The posterior predictive distribution quantifies, in
a parameter-free manner, how probable new observations

Otest drawn from the same generative process are, after see-
ing the original data Otrain, marginalizing over all possible
parameters:

p(Otest|Otrain)

=

∫
p(Otest|Ztest, A)p(Ztest, A|Otrain)d(Ztest, A)

= Ep(Ztest,A|Otrain)[p(Otest|Ztest, A)]

≈ 1

S

s=S∑
s=1

N (Otest|Z(s)
test, A

(s), σ2
o)

where S is a pre-specified number of samples (we arbitrarily
use 100) and Z

(s)
test, A

(s) ∼ p(Ztest, A|Otrain).

Over different (α, β) pairs and averaging over 10 syntheti-
cally generated datasets, we find that R-IBP achieves lower
(better) negative log posterior predictive values than all
other inference algorithms except for Doshi-Velez’s (non-
streaming) finite algorithm (Doshi-Velez et al., 2009) (Fig.
5), outperforming even Doshi-Velez’s (non-streaming) in-
finite algorithm. We also find that R-IBP is significantly
faster than almost all other inference algorithms (Fig. 5)
except for Widjaja’s (streaming) finite algorithm (Widjaja &
Doshi-Velez, 2017) which achieves significantly worse per-
formance. These results demonstrate that R-IBP provides a
good tradeoff between performance and speed and is a com-
petitive inference algorithm for infinite feature modeling on
streaming and on non-streaming data.

One surprise was that R-IBP sometimes performs as well as,
or even better than, non-streaming baselines when the model
is properly specified. For both of Widjaja et al.’s algorithms
and both of Doshi-Velez et al.’s algorithms, we used author-
published code to minimize the possibility of implementa-
tion errors. Our hypothesis (see Discussion for details and
supporting evidence) is that because most (if not all) IBP-
inference algorithms rely on stick-breaking constructions
that chain-multiply inferred beta variables, errors amplify
in a multiplicative way, whereas R-IBP adds inferred beta
variables to cumulative sums of sufficient statistics, washing
out errors as more data are observed.

We also tested whether R-IBP recovers the true number of
features when the model is properly specified. We found
that as R-IBP receives more observations, it converges to the
true number of inferred features (Fig. 6, left), over a range of
different data dimensions. Those features are incrementally
added with more observations (Fig. 6, right).

5.3. Infinite Linear Gaussian on MNIST Digits

We next tested how well R-IBP performs on real data, fol-
lowing the example set by (Paisley & Carin, 2009): we took
the odd digits from MNIST (Lecun et al., 1998) and mea-
sured how (dis)similar the features inferred for each class
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Figure 5. Comparison of Linear-Gaussian Inference Algorithms. Over a range of α values, R-IBP is significantly faster than baseline
inference algorithms and has better (lower) negative log posterior predictive values than the streaming baselines and even some non-
streaming baselines, averaged over 10 synthetic datasets. We fix β = 1.0 because baseline algorithms are only defined for β = 1.0. In all
panels, the correct α, β values are given to each inference algorithm.

Figure 6. R-IBP Feature Recovery on Streaming Data. R-IBP
recovers the correct order of magnitude of number of features (left),
adding features as more observations are encountered (right).

are. To quantify similarity between MNIST digit classes,
we compute the fraction of features shared between two
data drawn from the same digit vs. two data drawn from
different digits. One might predict that 3 and 5 are similar,
7 and 9 are similar, and perhaps 1 is on its own. This is
precisely what R-IBP recovers, in an unsupervised manner,
qualitatively matching the confusion matrix of a separately
trained supervised convolutional neural network classifier
(Fig. 7), and matching the results of Paisley & Carin (2009).

R-IBP Feature Similarity Confusion Matrix Classifier 

Example 
Images

Figure 7. R-IBP Recovers Intuitive Features for MNIST
Classes. Feature similarity between images of MNIST digits
drawn from same and different classes. Feature similarity matches
the confusion matrix of an independently-trained convolutional
neural network classifier on MNIST images. R-IBP infers more
similar features for digit classes 3 and 5, and for 7 and 9, with the
digit class 1 largely isolated.

Figure 8. R-IBP performance on cancer gene expression and di-
abetic patient data. On cancer gene expression (top) and diabetic
patient (bottom) data, R-IBP matches or outperforms baseline algo-
rithms across hyperparameter configurations (left). R-IBP runtime
scales linearly with α and quasilinearly with β (right), qualitatively
matching our complexity analysis.

5.4. Infinite Linear Gaussian on Tabular Data

We additionally tested R-IBP on tabular data, using two
datasets from the UCI Machine Learning Repository (Dua
& Graff, 2017): gene expression of cancer patients (801
samples, 20k features), and diabetic patient profiles (100k
samples, 55 features) (Strack et al., 2014). Because the hy-
perparameters α, β, σA, σo are unknown, we swept these for
each algorithm. The distribution of negative log posterior
predictive scores shows that on both datasets, R-IBP per-
forms well (Fig. 8, left); however, if one considers only the
best configuration of hyperparameters for each algorithm,
the two Doshi-Velez algorithms outperform R-IBP. We also
tested whether our complexity analysis holds qualitatively
by plotting how R-IBP’s runtime varies as a function of α, β,
with the expectation that the runtime should scale linearly
with α and quasilinearly with β i.e. β log(1 +N/β); this is
precisely what we found in both datasets (Fig. 8, right).
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Figure 9. R-IBP vs Finite Factor Analysis on Omniglot. R-IBP
overfits for low noise parameters (upper left), but outperforms
Finite Factor Analysis for higher noise parameters (lower center).

5.5. Infinite Factor Analysis on Omniglot

We conclude by demonstrating R-IBP’s general applicability
using a different feature model, Factor Analysis (FA), which
generalizes linear-Gaussian and (probabilistic) PCA. FA
introduces Wn ∈ RK ∼ N (0,Σw) (with Σw diagonal) to
capture the degree to which a feature is expressed. The FA
generative model is:

Z ∼ IBP (α, β)

Ak ∼ N (µA,ΣA)

wn ∼ N (0,Σw)

en ∼ N (0, σ2
oID×D)

O = (Z ◦W )A+ E

(8)

To showcase the utility of R-IBP on non-tabular data, we
took a pretrained variational autoencoder (VAE) (Kingma
& Welling, 2014) with a Gaussian latent prior2, fed it Om-
niglot handwritten character images (Lake et al., 2015), and
used its latent posterior means as observations. As a base-
line, we used Finite Factor Analysis (FFA), implemented in
scikit-learn (Pedregosa et al., 2011), sweeping the number
of finite components. We found that low-noise parameters
significantly overfit (Fig. 9) compared to FFA baselines, but
for higher-noise parameters, achieved lower reconstruction
error and negative log posterior predictive values.

6. Related Work
There is significant prior work on streaming inference as
well as Bayesian nonparametric modeling. At the intersec-
tion of the two, early papers focused on mixture modeling
(also known as clustering) (Lin, 2013; Tank et al., 2015;
Campbell et al., 2013), but later papers considered more
general nonparametric models (Campbell et al., 2015; Brod-
erick et al., 2013a).

2The VAE was acquired from (Tomczak & Welling,
2018)’s publicly available code at https://github.com/
jmtomczak/vae_vampprior.

R-IBP is similar to the Collapsed Gibbs sampler (CGS)
proposed in the original IBP paper (Griffiths & Ghahra-
mani, 2005), but differs in four critical ways. First, CGS is
based on the IBP’s conditional distribution, whereas R-IBP
is based on the IBP’s marginal distribution. Second, R-IBP
never forces the indicators zn,k to take values in {0, 1};
rather, R-IBP’s indicators exist in a superposition defined
by the average over all sample paths. Third, unlike CGS,
R-IBP does not marginalize out the features. Fourth and
finally, CGS cannot be used on streaming data because the
marginalization requires the features to follow a matrix nor-
mal distribution, yet once any data are observed, the features
no longer follow a matrix normal distribution since some
features shift to explain the data while other features do not.
Two related IBP streaming inference papers are (Widjaja &
Doshi-Velez, 2017) and (Wood & Griffiths, 2007).

7. Discussion
In this paper, we demonstrate how intelligent agents receiv-
ing streaming data can make use of infinite feature models
that create new features online, as demanded by the data,
in a probabilistic and principled manner. This was possi-
ble due to our novel recursive form of the Indian Buffet
Process, which we termed the Recursive IBP. We showed
that the Recursive IBP can be combined with different fea-
ture models, and that inference based on the Recursive IBP
displays performance and speed close to or sometimes sur-
passing baseline algorithms (including some offline baseline
algorithms, which have a significant advantage).

One curiosity is why Recursive-IBP performs so well. We
used published code for the two Widjaja et al. and two
Doshi-Velez et al. baselines, so implementation error is
unlikely. Our hypothesis stems from the observation that
the baselines do not use the IBP but rather its De Finetti
mixing-distribution: the Beta Process, e.g. (Teh et al., 2007;
Thibaux & Jordan, 2007; Doshi-Velez et al., 2009; Paisley &
Carin, 2009). The consequence of using the Beta Process is
that its stick-breaking constructions chain multiply inferred
quantities. We hypothesize this multiplication causes impre-

Figure 10. Beta Process vs. Indian Buffet Process. The Beta
Process (left) chain multiplies terms (red) to compute each feature’s
probability (yellow) for Z (aqua), whereas the IBP (right) creates
columns (green) then adds terms within columns of Z (aqua).

https://github.com/jmtomczak/vae_vampprior
https://github.com/jmtomczak/vae_vampprior
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cisions to quickly compound. In contrast, the Recursive IBP
marginalizes over feature probabilities, and instead adds
the inferred quantities to running sums, causing errors to
become less damaging with large n (Fig. 10).

This hypothesis is similar to the claim that collapsed Gibbs
sampling is often superior to Gibbs sampling (Liu, 1994)
because variables have been marginalized out. Although
we are currently unable to prove our hypothesis, Widjaja &
Doshi-Velez’s “infinite” algorithm provides supporting evi-
dence. That algorithm and R-IBP are both infinite (i.e., non-
truncated) and both streaming; the only difference is that
Widjaja et al. use a stick-breaking prior for znk, whereas we
use the approximate R-IBP prior. In our experiments, R-IBP
consistently outperforms Widjaja et al.’s infinite algorithm.

To emphasize one point, our particular choice of the filtering
prior q(zn|o<n) drops dependence on future observations.
Consequently, R-IBP will suffer if the smoothing and fil-
tering distributions differ significantly. However, charac-
terizing this difference analytically or empirically proved
difficult. The challenge is that other inference algorithms
we are familiar with use the stick-breaking construction of
the IBP, and we couldn’t think of how to disentangle the
effect of assuming a different graphical structure from the
effect of not revisiting past filtered distributions. Our paper
is not the first to use this restriction for tractability (e.g.,
Marino et al. (2018)), and we attempted to remove it by
adapting Campbell et al. (2021), but found their approach
relies on assumptions inapplicable to the IBP. We view this
as important, non-trivial future work.

Looking forward, Bayesian nonparametric models are a
growing topic of interest in cognitive science and neuro-
science, in studies ranging from human sensorimotor learn-
ing (Heald et al., 2021) to mouse spatial navigation (Sanders
et al., 2020). We are keen to study whether R-IBP and sim-
ilar streaming inference algorithms, e.g., (Schaeffer et al.,
2021), can better explain behavioral and neural data.
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A. Posterior Distribution Over Total Number of Dishes
As before, let Λn denote the total number of dishes after the nth customer:

Λn
def
=

k=∞∑
k=1

min
(
1,

n′=n∑
n′=1

zn′,k

)
Each term in the sum represents whether the kth dish (feature) exists after n customers (observations). Let’s consider one
term in the sum: mnk

def
=min(1,

∑
n′≤n zn′,k). We can use the following proposition to determine the distribution of mnk:

Proposition A.1. Let X be a random variable with CDF FX(x) = p(X ≤ x) and let c ∈ R be a constant. Then the

random variable Y
def
=min(c,X) has a CDF FY (y) = p(Y ≤ y) given by

FY (y) =

{
FX(y) if y < c

1 if y ≥ c
.

Substituting mnk for Y ,
∑

n′≤n zn′k for X and 1 for c, it follows that

Fmnk|o≤n
(0) = F∑

zn′k|o≤n
(0)

and
Fmnk|o≤n

(1) = 1.

We can now determine the probability mass function (PMF) of mnk:

q(mnk = 0|o≤n) = q(mnk ≤ 0|o≤n)

= Fmnk|o≤n
(0)

= F∑
zn′k|o≤n

(0)

= q
( ∑

n′≤n

zn′k ≤ 0
∣∣∣o≤n

)
= q
( ∑

n′≤n

zn′k = 0
∣∣∣o≤n

)

where the first and last steps follow because mnk and
∑

n′≤n zn′,k can only take values in {0, 1, 2, ..., n}. Each zn′k is a
Bernoulli random variable with distribution given by p(zn′k|o≤n′). The sum can only be 0 if all zn′k = 0, which occurs
with probability

∏
n′≤n p(zn′k = 0|o≤n′). The PMF of mnk is therefore

p(mnk = 0|o≤n) =
∏
n′≤n

p(zn′k = 0|o≤n)

p(mnk = 1|o≤n) = Fmnk|o≤n
(1)− Fmnk|o≤n

(0)

= 1−
∏
n′≤n

p(zn′k = 0|o≤n′)

and p(Mk = n) = 0 for n = 2, 3, ..., t. This tells us that Mk ∼ Bernoulli(1−
∏

n′≤n p(zn′k = 0|o≤n)), which matters
for two reasons. First, as t → ∞, the product approaches 0 and thus the probability that the kth feature exists goes to 1,
which is what we expect: given infinite data, the IBP should fill the entire feature space. Second, because Λn is the sum of
independent but non-identically distributed Bernoullis, Le Cam’s Theorem (Le Cam, 1960) again tells us Λn closely follows
a Poisson distribution:

p(Λn|o≤n) = Poisson

(
k=∞∑
k=1

mnk

)

= Poisson

k=∞∑
k=1

(
1−

n′=n∏
n′=1

p(zn′k = 0|o≤n′)
)
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B. Variational Parameter Updates
B.1. Closed Form Expression for Variational Parameters in the Exponential Family

In the following three subsections, we use the following fact (Beal, 2003; Wainwright & Jordan, 2008): if a distribution
p and its variational approximation q are both in the exponential family, then the optimal variational parameters ζi that
correspond to the variational distribution over variable Wi are the solution to

log q(Wi; ζi) = Eq(W−i)[log p(W,X|θ)] (9)

This simply means that when optimizing the variational parameters for a variable, we can replace other variables with their
expectations under the variational distribution and then solve for that one variable’s parameters.

B.2. Closed Form Solutions for Linear-Gaussian Variational Parameters

We provide closed form solutions for the variational parameters for the linear Gaussian model. The model is

on = AT zn + ϵn

where A ∈ RK×D, zn ∈ {0, 1}K , ϵn ∈ RD, with Gaussian priors on A and ϵ. We posit the variational family:

q(zn, A|o≤n; θn)
def
=

k=Λn∏
k=1

q(znk|o≤n; bnk)q(Ak|o≤n;µnk,Σnk)

q(znk|o≤n; bnk)
def
= Bern(bnk)

q(Ak|o≤n;µnk,Σnk)
def
=N (µnk,Σnk)

where θn
def
={bnk}k ∪ {µnk}k ∪ {Σnk}k are our variational parameters for the n observation. Our optimization problem is

to maximize the approximate lower bound with respect to θn:

Eq(zn,A|o≤n;θn)

[
log q(zn|o<n) + log q(A|o<n) + log p(on|zn, A)

]
+H[q(zn, A|o≤n)]

where q(A|o<n)
def
= q(A|o≤n−1) and q(zn|o<n) is given by Eqn. 5. To find the variational parameters for the indicators znl

and features Anl, we will use the closed form solutions. Dropping irrelevant terms from line to line, for the binary indicators,
we have:

log q(znl|o≤n; bnl) = Eq(zn−l,A|o≤n;θn)[log p(on, zn, A)]

= Eq(zn−l,A|o≤n;θn)[log q(znl|o<n) + log p(on|zn, A)]
Eq(zn−l,A;θn)[log q(znl|o<n)] = log q(znl|o<n)

= znl log
q(znl|o<n)

1− q(znl|o<n)

Eq(zn−l,A|o≤n;θn)[log p(on|zn, A)] = − 1

2σ2
o

Eq[(o
T
non − 2oTnA

T zn + zTnAAT zn)]

= − 1

2σ2
o

Eq

[(
−2
∑
k

znkA
T
k on + zTnAAT zn

)]

= − 1

2σ2
o

[
− 2znlµ

T
l on + znl Tr[Σnl + µlµ

T
l ]) + 2znlµ

T
l

( ∑
k:k ̸=l

bnkµk

)]
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Grouping the znl terms, setting equal, substituting the canonical parameterization of the Bernoulli and solving, we have:

log
bnl

1− bnl
= log

q(znl|o<n)

1− q(znl|o<n)
− 1

2σ2
o

[
− 2µT

l on +Tr[Σnl + µlµ
T
l ] + 2µT

l

( ∑
k:k ̸=l

bnkµk

)]
︸ ︷︷ ︸

def
= ϑ

bnl =
1

1 + e−ϑ

For the linear Gaussian parameters, we want to solve

log q(Al|o≤n;µnl,Σnl) = Eq(zn,A−l|o≤n;θn)[log p(on, zn, A)]

We take only the terms that depend on Al. On the left hand side, the terms that depend on Al are:

log q(Al|o≤n;µnl,Σnl) ∝ −1

2
(AT

l Σ
−1
nl Al − 2AT

l Σ
−1
nl µnl)

On the right hand side, the terms that depend on Ak are:

Eq(zn,A−l|o≤n;θn)[log p(on, zn, A)] = Eq(zn,A−l|o≤n;θn)[log q(Al|o<n) + log p(on|zn, A)]

Eq(zn,A−l|o≤n;θn)[log q(Al|o<n)] = −1

2
(AT

l Σ
−1
n−1,lAl − 2AT

l Σ
−1
n−1,lµn−1,l)

Eq(zn,A−l|o≤n;θn) log p(on|zn, A)] = − 1

2σ2
o

Eq(zn,A−l|o≤n;θn)[(on −AT zn)
T (on −AT zn)]

= − 1

2σ2
o

Eq

[(
on −

∑
k

znkAk

)T(
on −

∑
k′

znk′Ak′

)]

= − 1

2σ2
o

[
− 2oTn bnlAl + bnlA

T
l Al + 2

( ∑
k:k ̸=l

bnkµnk

)T
bnlAnl

]

= − 1

2σ2
o

[
bnlA

T
l Al + 2

( ∑
k:k ̸=l

bnkµnk − on
)T

bnlAnl

]

Setting equal, removing the −1/2 prefactor and completing the square gives us

AT
l Σ

−1
nl Al − 2AT

l Σ
−1
nl µnl = AT

l Σ
−1
n−1,lAl − 2AT

l Σ
−1
n−1,lµn−1,l +

1

σ2
o

[
bnlA

T
l Al + 2

( ∑
k:k ̸=l

bnkµnk − on
)T

bnlAnl

]

Considering terms with the form AT
l (·)Al allows us to solve for the covariance Σnl:

AT
l Σ

−1
nl Al = AT

l

(
Σ−1

n−1,l +
bnl
σ2
o

I
)
Al

which gives us the final expression:

Σnl =
(
Σ−1

n−1,l +
bnl
σ2
o

I
)−1

(10)

To find the mean µnl, we consider terms of the form AT
l (·)µnl:

−2AT
l Σ

−1
nl µnl = −2AT

l Σ
−1
n−1,lµn−1,l + 2

1

σ2
o

AT bnl

∑
k:k ̸=l

bnkµnk − on
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which gives us the final expression for the mean:

µnl = Σnl

Σ−1
n−1,lµn−1,l +

bnl
σ2
o

on −
∑
k:k ̸=l

bnkµnk

 (11)

We add one heuristic, based on the intuition that the features should ossify as evidence accumulates to support their existence.
Let µ∗

nl and Σ∗
nl denote the solutions to the previous equations. Note that the that optimization problem doesn’t take into

account how many observations were used to infer those parameters; the previous parameters µn−1,l and Σn−1,l carry just
as much weight regardless of wheter n = 2 or n = 1010. Consequently, instead of accepting outright the solutions µ∗

nl,Σ
∗
nl,

we take a number-of-observations weighted average:

µnl ∝ q(znl = 1|o≤n)µ
∗
nl +

(∑
n′<n

q(zn′k = 1|o≤n′)

)
µn−1,k

Σnl ∝ q(znl = 1|o≤n)Σ
∗
nl +

(∑
n′<n

q(zn′k = 1|o≤n′)

)
Σn−1,k

These running sums are already available from the recursion and thus require no additional time or space.

B.3. Closed Form Solutions for Factor Analysis Variational Parameters

We provide closed form solutions for the variational parameters for the Factor Analysis model. The model is

on = AT (zn ◦ wn) + ϵn

where wn ∈ RK ∼ N (0,Σw) and ◦ denotes element-wise multiplication. We posit the variational family:

q(zn, wn, A|o≤n; θn)
def
=

k=Λn∏
k=1

q(znk|o≤n; bnk)q(wn|o≤n;ϕn,Φn)q(Ak|o≤n;µnk,Σnk)

q(znk|o≤n; bnk)
def
= Bern(bnk)

q(wn|o≤n;ϕn,Φn)
def
=N (ϕn,Φn)

q(Ak|o≤n;µnk,Σnk)
def
=N (µnk,Σnk)

where θn
def
={bnk}k ∪ {ϕn,Φn} ∪ {µnk}k ∪ {Σnk}k are our variational parameters for the n observation. Our optimization

problem is to maximize the approximate lower bound with respect to θn:

Eq(zn,wn,A|o≤n;θn)

[
log q(zn|o<n) + log p(wn) + log q(A|o<n) + log p(on|zn, wn, A)

]
+H[q(zn, wn, A|o≤n)]

where q(A|o<n)
def
= q(A|o≤n−1;µn−1,k,Σn−1,k) and q(zn|o<n) is given in the main text as:

q(znk|o<n)
def
=

1

β + n− 1

∑
n′<n

q(zn′k = 1|o≤n′) + q(Λn−1 ≤ k − 1|o<n)− q(Λn−1 + λn ≤ k − 1|o<n)

We use the same approach as for the linear Gaussian model. Starting with the binary indicator variables znk, we want to
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solve:

log q(znl; bnl) = Eq(zn−l,wn,A|o≤n;θn)[log p(zn, wn, on, A)]

znl log
bnl

1− bnl
= Eq(zn−l,wn,A|o≤n;θn)[log p(zn, wn, on, A)]

= Eq(zn−l,A|o≤n;θn)[log q(znl|o<n) + log p(on|zn, wn, A)]

= znl log
q(znl|o<n)

1− q(znl|o<n)

− 1

2σ2
o

Eq[(o
T
non − 2oTnA

T (zn ◦ wn) + (zn ◦ wn)
TAAT (zn ◦ wn))]

= znl log
q(znl|o<n)

1− q(znl|o<n)

− 1

2σ2
o

(
− 2oTnµnlznlϕnl + Eq

∑
k

z2nkw
2
nkA

T
kAk +

∑
k,k′:k ̸=k′

znkwnkznk′wnk′AT
kAk′

)
= znl log

q(znl|o<n)

1− q(znl|o<n)

− 1

2σ2
o

(
− 2oTnµnlznlϕnl + znl[ϕ

2
nl +Φnll] Tr[Σnl + µnlµ

T
nl] + 2znlϕnlµ

T
nl

( ∑
k:l ̸=k

bnkϕnkµk

))

Grouping the znl terms, setting equal, substituting the canonical parameterization of the Bernoulli and solving, we have:

log
bnl

1− bnl
= log

q(znl|o<n)

1− q(znl|o<n)
− 1

2σ2
o

[
− 2oTnµnlϕnl + [ϕ2

nl +Φnll] Tr[Σnl + µnlµ
T
nl] + 2ϕnlµ

T
nl

( ∑
k:l ̸=k

bnkϕnkµk

)]
︸ ︷︷ ︸

def
= ϑ

bnl =
1

1 + e−ϑ

Next, for the scaling weights wn, we want to solve the following equation for mean ϕn and covariance Φn:

log q(wn;ϕn,Φn) = Eq(zn,A|o≤n;θn)[log p(zn, wn, on, A)]

−1

2
(wT

nΦ
−1
n wn − 2ϕT

nΦ
−1
n wn) = Eq(zn,A|o≤n;θn)[log p(wn) + log p(on|zn, wn, A)]

= −1

2
wT

nΣ
−1
w wn − 1

2σ2
o

Eq

[
(oTnon − 2oTnA

T (zn ◦ wn) + (zn ◦ wn)
TAAT (zn ◦ wn))

]
= −1

2
wT

nΣ
−1
w wn − 1

2σ2
o

(
− 2oTnµ

T
n diag(bn)wn + Eq[(zn ◦ wn)

TAAT (zn ◦ wn)])

= −1

2
wT

nΣ
−1
w wn − 1

2σ2
o

(
− 2oTnµ

T
n diag(bn)wn + wT

nEq[diag(zn)
TAAT diag(zn)]wn

)

The term Eq[diag(zn)
TAAT diag(zn)] is slightly trickier. We take the expectation with respect to A, then z:
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Eq(A)[AAT ]ij = Eq[A
T
i Aj ]

=

{
Tr[µniµ

T
nj ] i ̸= j

Tr[µniµ
T
ni +Σni] i = j

def
=Mij

Eq(zn,A)[diag(zn)
TAAT diag(zn)]ij = Eq(zn)[diag(zn)

TM diag(zn)]ij

= Eq(zn)[zniMijznj ]

=

{
bniMijbnj i ̸= j

bniMii i = j

def
= Sij

−1

2
wT

nΦ
−1
n wn = −1

2
wT

nΣ
−1
w wn − 1

2σ2
o

(
wT

nSwn

)

We can then solve for Φn:

Φn =
(
Σ−1

w +
1

σ2
o

S
)−1

(12)

Solving for ϕn similarly gives:

−1

2

(
−2ϕT

nΦ
−1
n

)
wn = − 1

2σ2
o

(
−2oTnµ

T
n diag(bn)

)
wn

ϕn =
1

σ2
o

ΦT
n diag(bn)µnon

Lastly, for the feature values Ak, we solve the following equation to obtain the mean µnk and covariance Σnk:

log q(Al|o≤n;µnl,Σnl) = Eq(zn,wn,A−l|o≤n;θn)[log p(zn, wn, on, A)]

= Eq(zn,wn,A−l|o≤n;θn)[log q(Al|o< n)] + Eq(zn,wn,A−l|o≤n;θn)[log p(on|zn, wn, A)]

As before, taking only the terms depending on Al gives:

log q(Al|o≤n;µnl,Σnl) = −1

2

(
AT

l Σ
−1
nl Al − 2AT

l Σ
−1
nl µnl

)
Eq [log q(Al|o< n)] = −1

2

(
AT

l Σ
−1
n−1,lAl − 2AT

l Σ
−1
n−1,lµn−1,l

)

Eq [log p(on|zn, wn, A)] = − 1

2σ2
o

Eq

[(
on −AT (zn ◦ wn)

)T (
on −AT (zn ◦ wn)

)]
= − 1

2σ2
o

Eq

−2oTn
∑
k

znkwnkAk +
∑
k

z2nkw
2
nkAkA

T
k +

∑
k,k′:k ̸=k′

znkznk′wnkwnk′AkA
T
k′


= − 1

2σ2
o

−2oTn bnlϕnlAl + bnl
[
Φnll + ϕ2

nl

]
AT

l Al + 2bnlϕnl

∑
k:k ̸=l

bnkµkϕnk

T

Al
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Setting the two sides equal, removing the − 1
2 prefactor, and considering terms of the form AT

l (·)Al allows us to solve for
the covariance Σnl:

AT
l Σ

−1
nl Al = AT

l

(
Σ−1

n−1,l +
bnl
σ2
o

[
Φnll + ϕ2

nl

]
I

)
Al

which yields the final expression:

Σnl =

(
Σ−1

n−1,l +
bnl
σ2
o

[
Φnll + ϕ2

nl

]
I

)−1

To obtain the mean µnl, we consider terms of the form Al(·)µnl:

−2AT
l Σ

−1
nl µnl = −2AT

l Σ
−1
n−1,lµn−1,l + 2AT

l

bnlϕnl

σ2
o

∑
k:k ̸=l

bnkµkϕnk − on


which gives the final expression:

µnl = Σnl

Σ−1
n−1,lµn−1,l +

bnlϕnl

σ2
o

on −
∑
k:k ̸=l

bnkµkϕnk


C. Theory
C.1. Summary of (Broderick et al., 2013b)

Broderick, Kulis & Jordan ICML’s 2013 paper ”MAD-Bayes: MAP-based Asymptotic Derivations from Bayes” shows that
Kulis & Jordan’s 2012 DP-Means can be derived in a different manner, as the zero-noise limit of the MAP estimator of a
Dirichlet Process Gaussian mixture model. With this view, they also consider a zero-noise limit of the MAP estimator of a
Beta-Bernoulli Process Linear-Gaussian feature model. Letting K+ denote the inferred number of dishes, the high level
idea is that the MAP estimator is the solution to the following optimization problem:

argmax
Z,A,K+

p(Z,A,K+|O) = argmax
Z,A,K+

p(Z,A,K+, O) = argmax
Z,A,K+

p(X|Z,A,K+)p(Z,K+)p(A)

If A has a matrix normal prior, Z a Beta-Bernoulli prior with concentration parameter α, X|Z,A a matrix normal likelihood
with covariance σ2

oI , then under the zero noise limit (i.e. σ2
o → 0) and reparameterizing α = exp(−λ2/2σ2

o), the objective
function can be written:

argmin
Z,A,K+

Tr[(X − ZA)T (X − ZA)] +K+λ2 (13)

Broderick et al. then define an algorithm BP-Means and show it converges to a local optimum. My goal is to define a similar
optimization problem for R-IBP and show that R-IBP monotonically improves.

C.2. Summary of R-IBP for Linear Gaussian Data

We consider the Linear-Gaussian generative model:

X = ZA+ ϵ

We posit the following variational family, which is a fancy way of saying (a) each znk is a Bernoulli with parameter bnk and
(b) each feature Ak is a Normal with mean µk and covariance Σk:

q(zn, A|o≤n; θn)
def
=

k=Λn∏
k=1

q(znk|o≤n; bnk)q(Ak|o≤n;µnk,Σnk)

q(znk|o≤n; bnk)
def
= Bern(bnk)

q(Ak|o≤n;µnk,Σnk)
def
=N (µnk,Σnk)
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On each time step n, we perform coordinate ascent, changing the variational parameters. For the Bernoulli parameters, the
updates are given by

log
bnl

1− bnl
= log

q(znl|o<n)

1− q(znl|o<n)
− 1

2σ2
o

[
− 2µT

l on +Tr[Σnl + µlµ
T
l ] + 2µT

l

( ∑
k:k ̸=l

bnkµk

)]
︸ ︷︷ ︸

def
= ϑ

bnl =
1

1 + e−ϑ

For the Normal parameters, the updates are given by:

Σnl =
(
Σ−1

n−1,l +
bnl
σ2
o

I
)−1

µnl = Σnl

(
Σ−1

n−1,lµn−1,l +
bnl
σ2
o

(
on −

∑
k:k ̸=l

bnkµnk

))

C.3. Zero Noise Limit of R-IBP

We repeat Thm. 4.1 for ease of reading. The proof follows.

Theorem C.1. For all k, initialize Ak’s variational parameters µ0k = 0 and Σ0k ∼ O(1) with respect to σ2
o . On each n

and for all k, initialize znk’s variational parameters bnk ∼ O(1) with respect to σ2
o . Reparameterize α

def
= exp(−γ2/2σ2

o).
Then in the limit σ2

o → 0, R-IBP minimizes Eqn. (13).

Lemma C.2. Under the above assumptions, R-IBP and BP-Means populate the Z ∈ {0, 1}K and A ∈ RK×D matrices
with the same values after a single pass through the data.

Proof. We prove Lemma C.2 via induction.

Base Case: Consider the first observation (n = 1) and first feature (k = 1). We initialize b11 at q(z11 = 1|o<1) = q(z11 = 1),
which is the sum of the probabilities that k ≥ 1 features are added:

q(z11 = 1;α) =

∞∑
k=1

αk

k!
e−α σ2

o→0
= O(αe−α)

The update for this first feature’s covariance is given by:

Σ11 =
(
Σ−1

01 +
q(z11 = 1;α)

σ2
o

I
)−1

=
σ2
o

q(z11 = 1;α)

( σ2
o

q(z11 = 1;α)
Σ−1

01 + I
)−1

=
σ2
o

q(z11 = 1;α)

i=∞∑
i=0

( σ2
o

q(z11 = 1;α)
Σ−1

01

)i
(−1)i

σ2
o→0
= 0(I)

= 0

where the second to last step is the Neumann series of the matrix (
σ2
o

q(z11=1;α)Σ
−1
01 + I)−1, which is applicable because the

matrix σ2
o

q(z11=1;α)Σ
−1
01 has spectral radius < 1. Intuitively, this makes sense: when the noise vanishes, we should be more
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confident with where our features are. Now we turn to the updates for the mean:

µ11 = Σ11

(
Σ−1

01 µ01 +
b01
σ2
o

(
on −

∑
k>1

b1kµ1k

))
=

σ2
o

q(z11 = 1;α)

( σ2
o

q(z11 = 1;α)
Σ−1

01 + I
)−1(q(z11 = 1;α)

σ2
o

o1

)
σ2
o→0
= o1

We next update the Bernoulli variational parameter, recalling that b11 = 1/(1 + e−ϑnk) where:

ϑnk
def
= log

αe−α

1− αe−α
− 1

2σ2
o

(
− 2µT

11(on −
∑
k>1

bnkµnk) + Tr[Σ11 + µ11µ
T
11]
)

= logα− α− log(1− αe−α)− 1

2σ2
o

Tr[Σ11] +
1

2σ2
o

(oTnon)

σ2
o→0
= − γ2

2σ2
o

− 0− 0 +
1

2σ2
o

(oTnon)

σ2
o→0
=


−∞ if γ2 > oT1 o1

0 if γ2 = oT1 o1

∞ if γ2 < oT1 o1

⇒ b11 =


0 if γ2 > oT1 o1

0.5 if γ2 = oT1 o1

1 if γ2 < oT1 o1

Next, consider the first observation (n = 1) and any feature beyond the first (k > 1). Because µ11 = o1 and b11 = 1, the
observation is fully explained and so on − b11µ11 = 0, so all b1k = 0 and no further features will emerge. Note that this is
identical to Broderick et al.’s BP-Means on the first pass.

Inductive Step. Assume that by the (n− 1)th observation, inclusive, R-IBP has filled the first n− 1 rows in Z and A with the
same values as BP-Means. We show that for the nth observation, R-IBP and BP-Means fill the nth row with the same values.
First, note that the total number of features Λn−1 is known exactly because ∀n′ ≤ n− 1,∀k, we have that bn′k ∈ {0, 1}.
We need to consider what each algorithm will do in 1 of two cases:

1. Columns corresponding to existing dishes/features i.e. k ∈ [1,Λn−1]. In this case, Eqn. 5 dictates that

q(znk = 1|o<n) =
α

β + n− 1

∑
n′<n

bn′k + q(Λn−1 ≤ k − 1|o<n)︸ ︷︷ ︸
=0

− q(Λn−1 + λn ≤ k − 1|o<n)︸ ︷︷ ︸
=0

which is ∼ O(1) with respect to σ2
o . Consequently, the update for the Bernoulli variational parameter becomes:

ϑ
σ2
o→0
=

1

2σ2
o

2µT
nk

(
on −

∑
k′ ̸=k

bnk′µnk′
)
− 1

2σ2
o

µT
nkµnk

If the inner product of µnk with the unexplained remainder on −
∑

k′ ̸=k bnk′µnk′ is more than half the inner product
of µnk with itself, R-IBP will set bnk = 1 and if not, R-IBP will set bnk = 0. This is precisely what BP-Means does.
This is because in BP-Means, bnk is set to 1 if

(on −
∑
k′ ̸=k

bnk′µnk′)T (on −
∑
k′ ̸=k

bnk′µnk′)− 2µT
nk(on −

∑
k′ ̸=k

bnk′µnk′) + µT
nkµnk

< (on −
∑
k′ ̸=k

bnk′µnk′)T (on −
∑
k′ ̸=k

bnk′µnk′)

and 0 otherwise. Simplifying, we see that the BP-Means criterion is identical to the R-IBP criterion:

1

2
µT
nkµnk < µT

nk(on −
∑
k′ ̸=k

bnk′µnk′)
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2. Columns corresponding to new dishes/features i.e. k ∈ (Λn−1,Λn−1 + λn]


