
Published at the Workshop on Agent Learning in Open-Endedness (ALOE) at ICLR 2022

STREAMING INFERENCE FOR INFINITE
NON-STATIONARY CLUSTERING

Rylan Schaeffer
Computer Science
Stanford University
rschaef@cs.stanford.edu

Gabrielle Kaili-May Liu
Brain and Cognitive Sciences
Massachusetts Institute of Technology
gkml@mit.edu

Yilun Du
Electrical Engineering & Computer Science
Massachusetts Institute of Technology
yilundu@mit.edu

Scott Linderman
Statistics & Electrical Engineering
Stanford University
scott.linderman@stanford.edu

Ila Rani Fiete
Brain and Cognitive Sciences
Massachusetts Institute of Technology
fiete@mit.edu

ABSTRACT

Learning from a continuous stream of non-stationary data in an unsupervised man-
ner is arguably one of the most common and most challenging settings facing in-
telligent agents. Here, we attack learning under all three conditions (unsupervised,
streaming, non-stationary) in the context of clustering, also known as mixture
modeling. We introduce a novel clustering algorithm that endows mixture models
with the ability to create new clusters online, as demanded by the data, in a prob-
abilistic, time-varying, and principled manner. To achieve this, we first define a
novel stochastic process called the Dynamical Chinese Restaurant Process (Dy-
namical CRP), which is a non-exchangeable distribution over partitions of a set;
next, we show that the Dynamical CRP provides a non-stationary prior over clus-
ter assignments and yields an efficient streaming variational inference algorithm.
We conclude with experiments showing that the Dynamical CRP can be applied
on diverse synthetic and real data with Gaussian and non-Gaussian likelihoods.

1 INTRODUCTION

Biological intelligence operates in a radically different data regime than most artificial intelligence.
In particular, biological intelligence must contend with data that is (i) unsupervised, (ii) streaming,
and (iii) non-stationary, either as a consequence of the agent, its environment, or both. One goal
of lifelong learning is to make artificial intelligence significantly more capable in this data regime,
and accomplishing that goal requires asking and answering how agents in this data regime ought to
approach learning.

In this paper, we consider the specific unsupervised problem of clustering, also known as mixture
modeling. Clustering is a ubiquitous and important problem in its own right, with widespread ap-
plications, but clustering can also serve as an intermediary sub-goal in service of other goals: for
instance, an agent in a partially observable world may wish to cluster sensory observations into
world states to then use for spatial navigation or reinforcement learning. In this paper, we specif-
ically consider an agent who receives a single stream of observations from non-stationary clusters,
with no ability to revisit past observations, but must nonetheless identify the clusters and assign
observations to them. In this data regime, the number of clusters (i.e. the number of mixture com-
ponents) is unknown and theoretically could be unbounded, and so the agent must use a clustering
algorithm capable of growing in representational capacity as more observations are encountered.
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In this paper, we define a novel distribution over partitions of a set that we call the Dynamical
Chinese Restaurant Process (Dynamical CRP), due to its relationship with the Chinese Restaurant
Process (CRP) (Ferguson, 1973; Blackwell & MacQueen, 1973; Antoniak, 1974). We then show
how the Dynamical CRP can be used as a prior over cluster assignments in a manner that yields
an efficient streaming clustering algorithm designed for non-stationary data. Starting with synthetic
Gaussian and non-Gaussian data, and moving to more sophisticated real data based on simultaneous
localization and mapping (SLAM), we show that streaming inference using the Dynamical CRP
achieves comparable or better performance than many common baselines, especially when the data
is non-stationary.

2 BACKGROUND

2.1 NOTATION

We consider a single time series of D-dimensional observable variables o1:N (on ∈ RD) occurring
at known times t1:N and corresponding to some latent cluster assignment variables c1:N (i.e. cn ∈
{1, 2, ...}), where ·1:N denotes the sequence (·1, ·2, ..., ·N ). Our goal is to infer the latent cluster
assignments c1:N . Each cluster may have corresponding variables {ϕc}Cc=1 (e.g., per-cluster means
and covariances) that we might also wish to infer. In the non-stationary setting, the clusters may
change over time in a manner that we shall specify.

2.2 INFINITE CLUSTERING VIA THE CHINESE RESTAURANT PROCESS

In the non-stationary streaming data regime, the number of clusters is unknown and unbounded.
Consequently, a useful clustering algorithm should be capable of (a) adding clusters as necessitated
by the data, (b) generating predictions of future likely clusters, and (c) changing learnt represen-
tations of clusters over time. To meet the first two desiderata, many clustering algorithms use the
Chinese Restaurant Process (CRP) or its related Dirichlet Process (Ferguson, 1973; Antoniak, 1974;
Neal, 2000; Blei & Jordan, 2006; Kulis & Jordan, 2012). The CRP is a single-parameter (α > 0)
stochastic process that defines a discrete distribution over partitions of a set, making it an applicable
prior for cluster assignments. The name CRP arises from a story of a sequence of customers (obser-
vations) arriving at a restaurant with an infinite number of tables (clusters), each table with infinite
capacity. The first customer c1 sits at the first table, and each subsequent customer cn sits either at
an unoccupied table with probability proportional to α or joins an occupied table with probability
proportional to the number of preceding customers at that table. Denoting the number of non-empty
tables after the first n customers Cn

def
=max(c1, ..., cn), CRP(α) defines a conditional distribution

for the nth customer cn given the preceding customers c<n:

pCRP (cn = c|c<n, α) ∝


∑

n′<n I(cn′ = c) if 1 ≤ c ≤ Cn−1
def
=max(c1, ..., cn−1)

α if c = Cn−1 + 1

0 otherwise
(1)

An example application of the CRP is task-free continual learning (Lee et al., 2020). However, the
CRP is ill-suited to streaming data because the CRP’s conditional form requires knowing the entire
history of cluster assignments; Schaeffer et al. (2021) showed the CRP can be adapted for streaming
data by rewriting the CRP in a recursive form:

pCRP (cn = c|α) ∝
∑
n′<n

p(cn′ = c|α) + αp(Cn−1 = c− 1) (2)

The two-part intuition is that (i) if many observations come from cluster c, then the next observation
is also likely to come from cluster c, and (ii) the probability of more clusters should grow with the
number of observations, giving the CRP the capacity to create an “infinite” number of clusters.

2.3 NON-STATIONARY VARIANTS OF THE CHINESE RESTAURANT PROCESS

Although the CRP is widely used, the CRP has two properties which are inappropriate for non-
stationary data. First, the CRP is exchangeable, meaning permuting the order of the data does not
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affect the probability of the resulting partition. Second, the CRP is consistent, meaning marginal-
izing out any observation is the same as if the observation never existed. To handle non-stationary
data, Zhu et al. (2005) defined the time-sensitive CRP (tsCRP) by introducing exponential decay:

ptsCRP (cn = c|c<n, α) ∝


∑

n′<n exp((tn − tn′)/τ)I(cn′ = c) if 1 ≤ c ≤ Cn−1

α if c = Cn−1 + 1

0 otherwise
(3)

Blei & Frazier (2011) later defined the distance-dependent Chinese Restaurant Process (ddCRP),
which assigns customers to other customers in a (possibly cyclic) directed graph. While flexible,
the ddCRP is impractical for streaming inference because observations can be assigned to future
observations, and time/space complexities must be quadratic in the number of observations because
the pairwise relationships have no structure and thus must all be remembered.

3 METHODS

3.1 DESIDERATA

Our goal is to define an efficient streaming inference algorithm for infinite non-stationary clustering.
To do this, we define a novel stochastic process over partitions of a set called the Dynamical CRP
to use as a prior over cluster assignments. The Dynamical CRP is designed with the following goals:

• Like the CRP, the Dynamical CRP can create “infinite” clusters (albeit upper bounded by
the number of observations) and can generate predictions of the next likely clusters.

• Unlike the CRP, the Dynamical CRP does not assume the observations are i.i.d., exchange-
able or consistent, meaning the Dynamical CRP can model non-stationary data.

• Unlike the tsCRP, the Dynamical CRP does not restrict the influence of observation times
to exponential decay and can therefore capture a richer class of temporal relationships.

• Unlike the ddCRP, the Dynamical CRP admits an efficient streaming inference algorithm,
which is critical for practical use by agents with finite memory.

The Dynamical CRP thus sits in a “Goldilocks” zone: more powerful than the CRP or tsCRP, but
less powerful than the ddCRP so as to still permit efficient streaming inference.

3.2 HIGH LEVEL IDEA

The heart of the CRP is the “table occupancies”Nc(t)
def
=
∑

n′≤n I(cn = c)I(tn′ ≤ t), which are the
sufficient statistics of the stochastic process. The Dynamical CRP embeds those table occupancies
in a dynamical system to evolve endogenously. By choosing or learning dynamics appropriate for a
particular task, the Dynamical CRP gains rich time-dependent priors for cluster assignments.

3.3 DEFINITION

Let H be a Hilbert space and Ñ(t) ∈ H contain both the “pseudo” table occupancies Nc(t) and any
desired higher-order temporal derivatives. Fix a linear dynamical system ℓ : Ñ → Ñ and increment
the cn-th table Ncn at time tn by 1. As before, define Cn

def
=max(c1, ..., cn). The Dynamical CRP,

denoted D-CRP (ℓ, α), is defined as the conditional distribution:

pD-CRP (cn = c|c<n, t≤n, ℓ, α) ∝


Nc(tn) if 1 ≤ c ≤ Cn−1

α if c = Cn−1 + 1

0 otherwise
(4)

Like the CRP, each customer increments a table’s occupancy count, but the tables’ occupancies can
now change endogenously. We next show the flexibility that the Dynamical CRP provides.
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Figure 1: The Dynamical Chinese Restaurant Process under 4 different dynamics. Elapsed time is
denoted by ∆

def
= tn− tn−1. Under different dynamics, the Dynamical CRP produces the CRP (Time

Function: Θ(∆)), the time-sensitive CRP (Time Function: exp(−∆)), and new distributions over
partitions of a set including sinusoidal (Time Function: cos(∆)) and hyperbolic (Time Function:
1/(1+∆)). Columns 1 and 3 are Monte Carlo samples; Columns 2 and 4 are our analytical recursion.

3.4 EXAMPLES

Stationary Dynamics: Define ℓ(Ñ)
def
= ∂tÑ(t) with initial conditions Nc(0) = 0. Then the Dynam-

ical CRP assumes the data is stationary and simplifies to the CRP (Fig. 1, Time Function: Θ(∆)).

Exponential Dynamics: Define ℓ(Ñ)
def
= τ∂tÑ(t)+Ñ(t). Then the relevance of previous customers

(observations) decays exponentially with elapsed time and the Dynamical CRP simplifies to the
time-sensitive CRP (Fig. 1, Time Function: exp(−∆)).

Oscillatory Dynamics: Suppose we want cluster assignments to be periodic on a particular
timescale. For instance, dawn and dusk have visually similar light, but crepuscular animals need
to distinguish them. Similarly, fall and spring have similar temperatures, but migratory and hiber-
nating/aestivating animals need to distinguish them. By defining the dynamics as a linear second
order differential equation ℓ(Ñ)

def
= ∂2t Ñ(t) + Ñ(t), the Dynamical CRP creates oscillatory table

assignments (Fig. 1, Time Function: cos(∆)).

Hyperbolic Dynamics: Hyperbolic discounting is commonly used in reinforcement learning and
observed across species including humans, monkeys, and rats (Sozou, 1998; Fedus et al., 2019).
The Dynamical CRP also enables hyperbolic clustering (Fig. 1, Time Function: 1/(1 + ∆)).

3.5 GENERATIVE MODEL

We now define the generative model for the streaming data o1:N , observed at known times t1:N ,
using the Dynamical CRP as a prior over cluster assignments c1:N :

c1:N |t1:N ∼ D-CRP (ℓ, α)
ϕk ∼i.i.d. p(ϕ)

on|cn, {ϕk}∞k=1 ∼ p(on;ϕcn)

(5)

3.6 STREAMING INFERENCE

Our approach will be to first show that the Dynamical CRP can be expressed in a recursive form
designed for streaming inference, similarly to the CRP, and then use this recursive form to define a
variational family for streaming inference.
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3.6.1 RECURSIVE FORM OF THE DYNAMICAL CRP

As with the CRP, the Dynamical CRP’s conditional distribution renders each cluster assignment cn
dependent on the entire history of previous cluster assignments c<n. This handicaps its applicability
to streaming data. We overcome this by converting the conditional distribution to a marginal distri-
bution by taking the average over all possible histories of cluster assignments (termed sample paths
in the stochastic processes literature). Omitting t1:N for brevity,

p(cn = c|ℓ, α) = Ep(cn|ℓ,α)[I(cn = c)]

= Ep(c<n|ℓ,α)[Ep(cn|c<n,ℓ,α)[I(cn = c)]]

= Ep(c<n|ℓ,α)[p(cn = c|c<n, ℓ, α)]

Substituting the Dynamical CRP’s conditional distribution and taking a first-order Taylor series
approximation of the expectation yields:

p(cn = c|ℓ, α) = Ep(c<n|ℓ,α)

[
Nc(tn)

α+
∑

cNc(tn)
+

α

α+
∑

cNc(tn)
I(c = Cn−1 + 1)

]

≈ E[Nc(tn)]

α+ E[
∑

cNc(tn)]
+

α

α+ E[
∑

cNc(tn)]
p(Cn−1 = c− 1)

Abusing notation slightly, we can write Nc(tn) =
∑

n′<n ℓ(I(cn′ = c), tn′ , tn), where ℓ(·, tn′ , tn)
means advancing the dynamical system from time tn′ to time tn. Because both the dynamics ℓ and
the expectation are linear operators, the two commute and the expectation can be pulled inside:

E[Nc(t)] =
∑

n′:tn′<t

ℓ(E[I(cn′ = c)], tn′ , t) =
∑

n′:tn′<t

ℓ(p(cn′ = c|ℓ, α), tn′ , t)

Together, this yields the recursive form of the Dynamical CRP:

p(cn = c|ℓ, α) ∝
∑

n′:tn′<t

ℓ(p(cn′ = c|ℓ, α), tn′ , tn) + αp(Cn−1 = c− 1) (6)

The Dynamical CRP’s recursive form (Eqn. 6) has similar intuition to the CRP’s recursive form
(Eqn. 2): previous cluster assignments influence the current cluster assignment and clusters can
appear with new observations. The key modification is that previous probability masses can now
change over time. We confirm the correctness of Eqn. 6 by comparing the analytical expression
to 5000 Monte Carlo samples drawn from the Dynamical CRP’s conditional distribution over α ∈
{1.1, 10.78, 15.37, 30.91} and with step, exponential, sinusoidal, and hyperbolic dynamics (Fig. 1);
visually, the analytical and Monte Carlo plots display excellent agreement. Quantitatively, the mean
squared error between the analytical expression for all p(cn|ℓ, α) and the Monte Carlo estimates
falls approximately as a power law in the number of Monte Carlo samples (Fig. 2) for all α values.
This supports our claim that the recursive form of the Dynamical CRP is highly accurate.

Figure 2: Mean-Squared Error between analytical expression for p(cn|ℓ, α) and a Monte Carlo
estimate. Over a wide range of α values, the mean-squared error between our analytical expression
and Monte Carlo estimates falls approximately as a power law, showing the exactness of Eqn. 6.
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3.6.2 STREAMING INFERENCE VIA RECURSIVE FORM OF DYNAMICAL CRP

To perform streaming inference, we start by considering the streaming evidence lower bound:

p(on|o<n) ≥ Eq(cn,{ϕ}|o≤n;θn)[log p(on, cn, {ϕ}|o<n)] +H[q(cn, {ϕ}, o≤n)]

= Eq(cn,{ϕ}|o≤n;θn)[log p(on|cn, {ϕ}, o<n) + log p(cn, {ϕ}|o<n)] +H[q(cn, {ϕ}|o≤n)]

with variational parameters θn. However, computing this evidence lower bound is tricky because
the filtering prior p(cn, {ϕ}|o<n) is unknown. Using the recursive form of the Dynamical CRP as
inspiration, we replace the filtering prior with an approximate filtering prior:

q(cn|o<n)
def∝
∑
n′<n

ℓ(q(cn′ = c|o≤n′ , ℓ, α), tn′ , tn) + α q(Cn−1 = c− 1|o≤n−1)

q({ϕ}|o<n)
def
=
∏
k

q(ϕk|o≤n−1)

q(cn, {ϕ}|o<n)
def
= q(cn|o<n)q({ϕ}|o<n)

Substituting the approximate filtering prior yields an approximate filtering evidence lower bound
that we maximize:

Eq(cn,{ϕ}|o≤n;θn)[log p(on|cn, {ϕ}, o<n) + log q(cn, {ϕ}|o<n)] +H[q(cn, {ϕ}|o≤n)] (7)

4 EXPERIMENTAL RESULTS

4.1 SYNTHETIC MIXTURE OF GAUSSIANS

Following previous work (Kulis & Jordan, 2012), we started with synthetic mixtures of Gaussians.
We generated datasets of 1000 observations by placing a Gaussian prior on the cluster means p(ϕ) =
N (0, ρ2I) and sweeping over dynamics, alpha, signal-to-noise ratios, and number of dimensions
to construct 3600 datasets total. We compared Dynamical CRP against seven baseline inference
algorithms; three are streaming and four are not. The non-streaming algorithms have unfettered
access to all observations and therefore serve as upper bounds on performance; any comparison
against these non-streaming baselines maximally disfavors our method. The baselines are:

• Collapsed Gibbs Sampling (non-streaming) (Neal, 2000).
• Variational Bayes Dirichlet-Process Gaussian Mixture Model (non-streaming) (Blei & Jor-

dan, 2006), implemented in scikit-learn (Pedregosa et al., 2011).
• K-Means (both streaming and non-streaming variants) (MacQueen, 1967; Lloyd, 1982).

For both variants, K-Means is given the ground-truth number of clusters.
• DP-Means (both streaming and non-streaming variants) (Kulis & Jordan, 2012; Broderick

et al., 2013).
• Recursive-CRP (streaming) (Schaeffer et al., 2021).

The baseline algorithms are all designed for stationary data, so we started our comparison with
stationary dynamics, i.e. ℓ(Ñ) = ∂tÑ(t), but we also considered other dynamics (exponential, os-
cillatory, hyperbolic). We measured the performance of each algorithm by the (normalized) mutual

Figure 3: Normalized mutual information between true cluster assignments and inferred clus-
ter assignments in Gaussian Mixture Models under 4 different dynamics.
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Figure 4: Dynamical CRP recovers close to the correct number of clusters under 4 different
dynamics.

Figure 5: Dynamical CRP creates clusters over time, as necessitated by incoming data.

information between the inferred cluster assignments and the true cluster assignments, implemented
in scikit-learn (Pedregosa et al., 2011). On stationary data, we found that Dynamical CRP was
competitive on stationary data (Fig 3A), but excelled on non-stationary data (Fig 3BCD).

We additionally plotted the number of clusters inferred by each algorithm. We found that D-CRP
was often well within the correct order of magnitude, growing appropriately with the concentration
hyperparameter α (Fig. 4). To explore how clusters are created as observations are received, we
visualized when the Dynamical CRP creates clusters by plotting the ratio of the number of inferred
clusters to the total number of true clusters as a function of the number of observations, dividing by
the total number of true clusters in that set of observations. We found that Dynamical CRP creates
clusters over time, as necessitated by the data (Fig. 5).

Figure 6: Dynamical CRP displays better performance when the data has a higher signal-to-
noise ratio.

We also investigated how Dynamical CRP performs under different signal-to-noise (defined as the
ratio of means covariance prefactor ρ to likelihood covariance prefactor σ) regimes; interestingly, we
found that while some algorithms do not display better performance with increasing signal-to-noise,
Dynamical CRP does display better performance with higher SNR (Fig. 6).

4.2 SYNTHETIC MIXTURE OF VON MISES-FISHER

To demonstrate that the Dynamical CRP is not limited to Gaussian mixture models in Euclidean
space, we turned to von Mises-Fisher mixture models on the surface of hyperspheres. We made
this particular choice because one future line of work we are excited by involves combining deep
learning with Bayesian nonparametrics for lifelong learning, and recent advances in self-supervised
representation learning constrain deep neural network representations to the surface of hyperspheres
(Chen et al., 2020; Grill et al., 2020; Caron et al., 2021). As with the mixture of Gaussians, we
generated datasets of 1000 observations from the generative model, with a uniform prior on the
cluster directions p(ϕ) = VMF(κ = 0), by sweeping over dynamics, alpha, signal-to-noise ratios,
and ambient dimension to construct 3600 datasets total. Most previous baselines were designed
for Gaussian likelihoods, meaning only the Recursive-CRP could be used. We again plotted the
number of clusters inferred by each algorithm. We found that D-CRP often outperformed R-CRP
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(Fig. 7) and was often well within the correct order of magnitude, growing appropriately with the
concentration hyperparameter α (Fig. 8).

Figure 7: Normalized mutual information between true cluster assignments and inferred clus-
ter assignments in von Mises-Fisher Mixture Models under 4 different dynamics.

Figure 8: Dynamical CRP recovers close to the correct number of clusters under 4 different
dynamics.

4.3 ROOM CLUSTERING FOR SIMULTANEOUS LOCALIZATION AND MAPPING

Clustering is useful not just in its own right, but also as a sub-task for other tasks. For instance, an
agent may wish to cluster observations into states for use in planning or reinforcement learning. As
a demonstration, we turn to the domain of simultaneous localization and mapping (SLAM) (Rosen
et al., 2021), in which an agent must both learn a map of its environment as well as its location within
that environment. One common approach is to learn hierarchically (Fairfield et al., 2010; Klukas
et al., 2022) by clustering sensory observations into rooms that can then be used to efficiently plan.

Figure 9: Clusters inferred by Dynamical CRP in a 2D spatial navigation task. Each color in
each environment represents a unique cluster, inferred from visible landmarks (black diamonds) en-
countered along a single trajectory. The Dynamical CRP aggregates visually-distinguishable rooms
(various colors) into distinct clusters and visually-identical hallways into the same cluster (orange).

We procedurally generated environments with multiple rooms, each containing a variable number
of sensory observations (“landmarks” in the SLAM literature), and then applied D-CRP with ex-
ponential dynamics to a single trajectory through each novel environment. At each position along
the trajectory, a landmark is either visible or not, determined by a limited range of view. We used a
product-of-Bernoullis likelihood for expressing whether each landmark is visible from a given po-
sition; for simplicity, the likelihood does not take into account position or velocity. We found the
D-CRP with exponentially decaying dynamics excels at this task. As D-CRP takes a single trajec-
tory through each novel environment, D-CRP aggregates sensory landmarks (black diamonds) into
visually-distinguishable unique clusters (rooms) and visually-indistinguishable non-unique clusters
(hallways, orange) (Fig 9).

The D-CRP excels at this task when equipped with exponentially decaying dynamics, because the
dynamics impose an inductive bias that trajectories are temporally and spatially smooth, meaning the
D-CRP has a strong prior towards allocating two sequential observations to the same cluster even
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if the two sensory observations differ significantly. These rooms could then serve as a high-level
representation for hierarchical spatial navigation.

5 DISCUSSION

In this paper, we attack unsupervised learning on streaming non-stationary data in the specific set-
ting of mixture modeling. We propose a novel stochastic process that defines a non-exchangable
distribution over partitions of a set, that we termed the Dynamical Chinese Restaurant Process. We
show that the Dynamical CRP provides a bespoke non-stationary prior over cluster assignments
and is amenable to an efficient streaming variational inference algorithm. We then demonstrate on
both synthetic and real data, with Gaussian and non-Gaussian likelihoods, that the Dynamical CRP
provides a powerful clustering algorithm for non-stationary streaming data.
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A COORDINATE ASCENT VARIATIONAL INFERENCE PARAMETER UPDATES

This section contains derivations for Coordinate Ascent Variational Inference (CAVI). Specifically,
the following derivations show how to update variational parameters in different with various likeli-
hoods.

A.1 CLOSED-FORM EXPRESSION FOR VARIATIONAL PARAMETERS IN THE EXPONENTIAL
FAMILY

In the following three subsections, we use the following fact from Beal (2003); Wainwright & Jordan
(2008): if a distribution p and its variational approximation q are both in the exponential family, then
the optimal variational parameters ζi that correspond to the variational distribution over variable Wi

are the solution to
log q(Wi; ζi) = Eq(W−i)[log p(W,X|θ)] (8)

This means that when optimizing the parameters for one variable, we can replace all other vari-
ables with their expectations under the variational distribution and then solve for that one variable’s
variational parameters.

A.2 CAVI FOR MULTIVARIATE GAUSSIAN LIKELIHOOD

Mean field family:

q(cn, {ϕ}|o≤n)
def
= q(cn|o≤n; {πnc})

Cn∏
k=1

q(ϕnc|o≤n;µnc,Σnc)

q(cn|o≤n; {πnc})
def
= Categorical(πn)

q(ϕnc|o≤n;µnc,Σnc)
def
=N (µnc,Σnc)

where θn
def
={πnc}k ∪ {µnc}k ∪ {Σnc}k are our variational parameters for the nth observation. The

mixture weights’ parameters πn will be determined by solving the following:

log q(cn|o≤n;πn) = Eq({ϕnc})[log p(on, cn, {ϕnc}|o<n)]

The left-hand side (LHS) is:

log q(cn|o≤n;πn) =
∑
k

I(cn = k) log πnc

Dropping terms that don’t include cn, the right-hand side (RHS) contains two relevant terms:

Eq({ϕnc})[log p(on, cn, {ϕnc}|o<n)]

= Eq({ϕnc})[log p(cn|o<n) + log p(on|cn, {ϕnc})]
= log q(cn|o<n) + Eq({ϕnc})[log p(on|cn, {ϕnc})]

The first term is determined by the Dynamical CRP prior:

log q(cn|o<n) =
∑
k

I(cn = k) log q(cn = k|o<n)

The second term is given by:

Eq({ϕnc})[log p(on|cn, {ϕnc})]

= Eq({ϕnc})

[∑
k

− 1

2σ2
o

||on − ϕnc||2 I(cn = k)
]

=
∑
k

− 1

2σ2
o

(oTnon − 2oTnµnc +Tr[Σnc + µncµ
T
nc]) I(cn = k)

12



Published at the Workshop on Agent Learning in Open-Endedness (ALOE) at ICLR 2022

Comparing the simplified left-hand and right-hand sides, and solving for the variational parameter
of the probability of the lth cluster πnl:

πnl ∝ exp
(
log q(cn = l|o<n)−

1

2σ2
o

oTnon +
1

σ2
o

oTnµnl −
1

2σ2
o

Tr[Σnl + µnlµ
T
nl]
)

For the lth cluster centroid’s variational parameters, we want to solve:

log q(ϕnl|o≤n;µnl,Σnl) = Eq[log p(on, cn, {ϕnc}|o<n)]

The LHS is:

log q(ϕnl|o≤n;µnl,Σnl)

= −1

2
(ϕnl − µnl)

TΣ−1
nl (ϕnl − µnl)

The RHS is:

Eq[log p(on, cn, {ϕnc}|o<n)] = Eq[log q(ϕnl|o<n) + log p(on|cn, {ϕnc}, o<n)]

where the first RHS term is:

Eq[log q(ϕnl|o<n)] = −1

2
(ϕnl − µn−1,l)

TΣ−1
n−1,l(ϕnl − µn−1,l)

and the second RHS term is:

Eq[log p(on|cn, {ϕnc}, o<n)] = Eq

[∑
k

− 1

2σ2
o

(on − ϕnc)
T (on − ϕnc)I(cn = k)

]
= − 1

2σ2
o

(on − ϕnl)
T (on − ϕnl)πnl

Setting the LHS and RHS equal and isolating terms quadratic in ϕnl allows us to solve for the
variational covariance parameter:

ϕTnlΣ
−1
nl ϕnl = ϕTnlΣ

−1
n−1,lϕnl + ϕTnl

(πnl
σ2
0

I
)
ϕnl

Σnl =
(
Σ−1

n−1,l +
πnl
σ2
0

I
)−1

Isolating terms linear in ϕnl allows us to solve for the variational mean parameter:

ϕTnlΣ
−1
nl µnl = ϕTnlΣ

−1
n−1,l µn−1,l + ϕTnl(

πnl
σ2
o

I)on

µnl = Σnl

(
Σ−1

n−1,l µn−1,l +
πnl
σ2
o

on

)

A.3 CAVI FOR (PRODUCT OF) BERNOULLI LIKELIHOODS

Mean-field family:

q(cn, {ϕ}|o≤n)
def
= q(cn|o≤n;πn)

Cn∏
c=1

q(ϕnc|o≤n; γnc, βnc)

q(cn|o≤n; {πn})
def
= Categorical(πn)

q(ϕnc|o≤n; γnc, βnc)
def
=
∏
c

∏
l

Beta(γncl, βncl)

13
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where θn
def
={πnc}c ∪ {γncl} ∪ {κncl} are our variational parameters for the nth observation. The

mixture weights’ parameters πn will be determined by solving the following:

log q(cn|o≤n;πn) = Eq({ϕnc})[log p(on, cn, {ϕnc}|o<n)]

The left-hand side (LHS) is:

log q(cn|o≤n;πn) =
∑
c

I(cn = c) log πnc

Dropping terms that don’t include cn, the right-hand side (RHS) contains two relevant terms:

Eq[log p(on, cn, {ϕnc}|o<n)] = Eq[log p(cn|o<n) + log p(on|cn, {ϕnc})]
= log q(cn|o<n) + Eq[log p(on|cn, {ϕnc})]

The first term is determined by the Dynamical CRP prior:

log q(cn|o<n) =
∑
c

I(cn = c) log q(cn = c|o<n)

The second term is given by:

Eq({ϕnc})[log p(on|cn, {ϕnc})]

= Eq({ϕnc})

[
log
∏
c

(∏
l

ϕxnl

ncl (1− ϕncl)
1−xnl

)I(cn=c)
]

= Eq({ϕnc})

[∑
c

I(cn = c)
∑
l

log
(
ϕxnl

ncl (1− ϕncl)
1−xnl

)]
=
∑
c

I(cn = c)
∑
l

(
xnlEq(ϕncl)[log ϕncl] + (1− xnl)Eq(ϕncl)[log(1− ϕncl)]

)
=
∑
c

I(cn = c)
∑
l

(
xnl(ψ(γncl)− ψ(γncl + βncl)) + (1− xnl)(ψ(βncl)− ψ(γncl + βncl))

)

where ψ(x) def
= d

dx log Γ(x) is the digamma function. Comparing the simplified left-hand and right-
hand sides, and solving for the variational parameter of the probability of the lth cluster πnl:

πnc ∝ exp

(
log q(cn = c|o<n) +

∑
l

(
xnl(ψ(γncl)− ψ(γncl + βncl))

+ (1− xnl)(ψ(βncl)− ψ(γncl + βncl))
))

For the c-th cluster’s variational parameters, we want to solve:

log q(ϕncl|o≤n; γncl, βncl) = Eq[log p(on, cn, {ϕnc}|o<n)]

The LHS is:

log q(ϕncl|o≤n; γncl, βncl) = logBeta(ϕncl; γncl, βncl)

= (γncl − 1) log(ϕncl) + (βncl − 1) log(1− ϕncl)

Dropping terms that don’t contain ϕncl, the RHS is:

Eq(−ϕncl)[log p(on, cn, {ϕnc}|o<n)]

= Eq(−ϕncl)

[∑
c′

I(cn = c′)
∑
l′

log
(
ϕ
xnl′
ncl′ (1− ϕncl′)

1−xnl′
)]

+ Eq(−ϕncl)

[
q(ϕncl|o<n)

]
= πnc

(
xnl log(ϕncl) + (1− xnl) log(1− ϕncl)

)
+ (γn−1,cl − 1) log(ϕncl) + (βn−1,cl − 1) log(1− ϕncl)

14
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Grouping terms and setting equal:

γncl − 1 = πncxnl + γn−1,cl − 1

γncl = πncxnl + γn−1,cl

βncl − 1 = πnc(1− xnl) + βn−1,cl − 1

βncl = πnc(1− xnl) + βn−1,cl

A.4 CAVI FOR VON-MISES-FISHER LIKELIHOOD

Mean field family:

q(cn, {ϕ}|o≤n)
def
= q(cn|o≤n; {πnc})

Cn∏
k=1

q(ϕnc|o≤n;µnc,Σnc)

q(cn|o≤n; {πnc})
def
= Categorical(πn)

q(ϕnc|o≤n;µnc, κnc)
def
= VMF(µnc, κnc)

where θn
def
={πnc}k ∪ {µnc}k ∪ {κnc}k are our variational parameters for the nth observation. The

mixture weights’ parameters πn will be determined by solving the following:

log q(cn|o≤n;πn) = Eq({ϕnc})[log p(on, cn, {ϕnc}|o<n)]

The left-hand side (LHS) is:

log q(cn|o≤n;πn) =
∑
k

I(cn = k) log πnc

Dropping terms that don’t include cn, the right-hand side (RHS) contains two relevant terms:

Eq[log p(on, cn, {ϕnc}|o<n)] = Eq[log p(cn|o<n) + log p(on|cn, {ϕnc})]
= log q(cn|o<n) + Eq[log p(on|cn, {ϕnc})]

The first term is determined by the RNCRP prior:

log q(cn|o<n) =
∑
k

I(cn = k) log q(cn = k|o<n)

The second term is given by:

Eq({ϕnc})[log p(on|cn, {ϕnc})] = Eq({ϕnc})

[∑
k

1

σ2
o

ϕTnc on I(cn = k)
]

=
∑
k

1

σ2
o

(
I ′D/2−1(κ)

ID/2−1(κ)
− D/2− 1

κ

)
µT
ncon I(cn = k)

Comparing the simplified left-hand and right-hand sides, and solving for the variational parameter
of the probability of the lth cluster πnl:

πnl ∝ exp

(
log q(cn = l|o<n) +

1

σ2
o

(
I ′D/2−1(κ)

ID/2−1(κ)
− D/2− 1

κ

)
µT
ncon

)

For the lth cluster centroid’s variational parameters, we want to solve:

log q(ϕnl|o≤n;µnl, κnl) = Eq[log p(on, cn, {ϕnc}|o<n)]
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The LHS is:

log q(ϕnl|o≤n;µnl, κnl) = κnl µ
T
nl ϕnl

The RHS is:

Eq[log p(on, cn, {ϕnc}|o<n)] = Eq[log q(ϕnl|o<n) + log p(on|cn, {ϕnc}|o<n)]

where the first RHS term is:

Eq[log q(ϕnl|o<n)] = κn−1,l µ
T
n−1,l ϕnl

and the second RHS term is:

Eq[log p(on|cn, {ϕnc}, o<n)] = Eq

[∑
k

1

σ2
o

ϕTnc on I(cn = k)
]
=

1

σ2
o

ϕTnl on πnl

Setting the LHS and RHS equal:

κnl µnl = κn−1,l µn−1,l +
1

σ2
o

πnl on

The two variational parameters are separately recoverable by setting µnl equal to the unit direction
of the right hand side RHS def

= κn−1,l µn−1,l +
1
σ2
o
πnl on and by setting κnl equal to the magnitude

of the right hand side:

κnl = ||RHS||2 µnl =
RHS

||RHS||2
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